

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(09/99)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA,
DIGITAL SYSTEMS AND NETWORKS

Digital transmission systems – Terminal equipments –
Coding of analogue signals by methods other than PCM

ITU-T Recommendation G.722.1
(Previously CCITT Recommendation)

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

For further details, please refer to ITU-T List of Recommendations.

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS G.100–G.199

INTERNATIONAL ANALOGUE CARRIER SYSTEM
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-
TRANSMISSION SYSTEMS

G.200–G.299

INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE
SYSTEMS ON METALLIC LINES

G.300–G.399

GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE
SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION
WITH METALLIC LINES

G.400–G.449

COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY G.450–G.499

TESTING EQUIPMENTS
TRANSMISSION MEDIA CHARACTERISTICS G.600–G.699

DIGITAL TRANSMISSION SYSTEMS

TERMINAL EQUIPMENTS G.700–G.799

General G.700–G.709

Coding of analogue signals by pulse code modulation G.710–G.719

Coding of analogue signals by methods other than PCM G.720–G.729

Principal characteristics of primary multiplex equipment G.730–G.739

Principal characteristics of second order multiplex equipment G.740–G.749

Principal characteristics of higher order multiplex equipment G.750–G.759

Principal characteristics of transcoder and digital multiplication equipment G.760–G.769

Operations, administration and maintenance features of transmission equipment G.770–G.779

Principal characteristics of multiplexing equipment for the synchronous digital
hierarchy

G.780–G.789

Other terminal equipment G.790–G.799

DIGITAL NETWORKS G.800–G.899

DIGITAL SECTIONS AND DIGITAL LINE SYSTEM G.900–G.999

 Recommendation G.722.1 (09/99) i

ITU-T RECOMMENDATION G.722.1

CODING AT 24 AND 32 kbit/s FOR HANDS-FREE OPERATION
IN SYSTEMS WITH LOW FRAME LOSS

Summary

This Recommendation describes a low complexity encoder and decoder that may be used for 7 kHz
bandwidth audio signals working at 24 kbit/s or 32 kbit/s. Further, this algorithm is recommended
for use in hands-free applications such as conferencing where there is a low probability of frame
loss. It may be used with speech or music inputs. The bit rate may be changed at any 20 ms frame
boundary.

This Recommendation includes a software package which contains the encoder and decoder source
code and a set of test vectors for developers. These vectors are a tool providing an indication of
success in implementing this code.

Source

ITU-T Recommendation G.722.1 was prepared by ITU-T Study Group 16 (1997-2000) and was
approved under the WTSC Resolution No. 1 procedure on 30 September 1999.

ii Recommendation G.722.1 (09/99)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on
these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation the term recognized operating agency (ROA) includes any individual, company,
corporation or governmental organization that operates a public correspondence service. The terms
Administration, ROA and public correspondence are defined in the Constitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2000

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation G.722.1 (09/99) iii

CONTENTS

 Page

1 Scope... 1

2 Normative references.. 2

3 The encoder... 2

3.1 The Modulated Lapped Transform (MLT)... 4

3.2 Computing and quantizing the amplitude envelope ... 5

3.3 Coding the amplitude envelope .. 5

3.4 Categorization procedure.. 6

3.4.1 Adjusting the number of available bits.. 7

3.4.2 Calculating the initial categorization... 7

3.4.3 Generating the other fifteen categories.. 7

3.5 Scalar Quantized Vector Huffman Coding (SQVH) .. 9

3.7 Transmission of the MLT vector indices.. 11

3.8 Bit stream.. 11

4 The decoder... 11

4.1 Decoding the amplitude envelope... 12

4.2 Determining categorization... 12

4.3 Decoding MLT coefficients.. 12

4.4 Noise-fill ... 13

4.5 Insufficient bits ... 13

4.6 Frame erasure.. 13

4.7 The Inverse MLT (IMLT)... 13

5 C code ... 14

6 Flow chart of categorization procedure .. 15

Software package:

– Encoder source code

– Decoder source code

– Test vectors

 Recommendation G.722.1 (09/99) 1

Recommendation G.722.1

CODING AT 24 AND 32 kbit/s FOR HANDS-FREE OPERATION
IN SYSTEMS WITH LOW FRAME LOSS1

(Geneva, 1999)

1 Scope

This Recommendation describes a digital wideband coder algorithm that provides an audio
bandwidth of 50 Hz to 7 kHz, operating at a bit rate of 24 kbit/s or 32 kbit/s. The digital input to the
coder may be 14, 15 or 16 bit 2’s complement format at a sample rate of 16 kHz (handled in the same
way as in Recommendation G.722). The analogue and digital interface circuitry at the encoder input
and decoder output should conform to the same specifications described in Recommendation G.722.

The algorithm is based on transform technology, using a Modulated Lapped Transform (MLT). It
operates on 20 ms frames (320 samples) of audio. Because the transform window (basis function
length) is 640 samples and a 50 per cent (320 samples) overlap is used between frames, the effective
look-ahead buffer size is 20 ms. Hence the total algorithmic delay of 40 ms is the sum of the frame
size plus look-ahead. All other delays are due to computational and network transmission delays.

The description of the coding algorithm of this Recommendation is made in terms of bit-exact,
fixed-point mathematical operations. The C code indicated in clause 5, which constitutes an integral
part of this Recommendation, reflects this bit-exact, fixed-point descriptive approach, and shall take
precedence over the mathematical descriptions of clauses 3 and 4 whenever discrepancies are found.

The mathematical descriptions of the encoder (clause 3), and decoder (clause 4), could have been
implemented in several other fashions, but the C code of clause 5 has been provided as reference
purposes. Thus, to comply with this Recommendation, any implementation must produce for any
input signal the same output results as the C code of clause 5.

Note that to ensure that this goal is achieved, implementations should follow the computational
details, tables of constants, sequencing of variable adaptation and use given by the C code of
clause 5. However, it is recognized that there are many parts of the algorithm critical to maintaining
correct bit-exact operation. For these parts, implementations shall reproduce the computational
details, tables of constants, sequencing of variables adaptation and use written in the C code of
clause 5.

It is recognized that the C code provided is for reference, and has not been optimized (in terms of
memory, complexity, etc.) for a specific implementation platform. The C code may require
optimization for a particular implementation.

A non-exhaustive set of test signals is provided as part of this Recommendation, as a tool to assist
implementors to verify their implementations of the encoder and decoder comply with this
Recommendation.

In practice, purchasers of wideband equipment or software implementations will expect them to be
compliant with this standard to ensure interworking capability. Implementors may choose to
optimize the C code, or otherwise modify the reference C code. In such cases the implementor shall
verify that his implementation produces the same resultant output for any given input as would be
expected using the C code expressed in clause 5.

1 This Recommendation includes a software package which contains the encoder and decoder source code

and a set of test vectors for developers.

2 Recommendation G.722.1 (09/99)

2 Normative references

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[1] CCITT Recommendation G.722 (1988), 7 kHz audio-coding within 64 kbit/s.

[2] ITU-T Recommendation G.192 (1996), A common digital parallel interface for speech
standardization activities.

[3] ISO/IEC 9899:1999, Programming languages – C.

3 The encoder

Figure 1 presents a block diagram of the encoder.

T1606840-99

categorization
switch

MLT

MUX

bit count

code bits

bit count

code bits

bit count

code bits

envelope code bits

bit count

audio

bit count per frame (480 or 640)

SQVH

MLT
code bits

region power
quantization/coding

region
power
quanti-
zation
levels

categorization
procedure

categorization
selection for
rate control

categorization
control

bit stream
to decoder

quantization
 and coding using
categorization 0

quantization
and coding using
categorization 1

quantization
and coding using
categorization 15

Figure 1/G.722.1 – Block diagram of the encoder

 Recommendation G.722.1 (09/99) 3

Every 20 milliseconds (320 samples) the most recent 640 time domain audio samples are fed to a
Modulated Lapped Transform (MLT). Each transform produces a frame of 320 MLT coefficients,
and each frame of MLT coefficients is coded independently, i.e. there is no state information left
over from the previous frame. For 24 kbit/s and 32 kbit/s operation the allotment of bits per frame is
480 and 640, respectively.

The transform coefficients generated by the MLT transform are first applied to a module which
computes the amplitude envelope and quantizes it; see Figure 2. The amplitude envelope is a coarse
representation of the MLT spectrum. The spectrum is divided into blocks of 20 MLT coefficients
called regions. Each region represents a bandwidth of 500 Hz. As the bandwidth is 7 kHz, the
number_of_regions is set at fourteen. MLT coefficients representing frequencies above 7 kHz are
ignored. The code bits representing the amplitude envelope are sent to the MUX (Multiplexer) for
transmission to the decoder. The bits remaining after quantization and coding of the amplitude
envelope are used to encode the MLT coefficients in the categorization process.

0 1 2 10 11 12 13

T1606850-99frequency

amplitude envelope

MLT spectrum

20 MLT coefficients
in a region

NOTE – Each value of the amplitude envelope represents the RMS (root-mean-square) value of the
MLT coefficients in that region.

Figure 2/G.722.1 – An illustration of how the spectrum is divided
into fourteen regions, each containing 20 MLT coefficients

Using the quantized amplitude envelope and the number of bits remaining in the frame after
amplitude envelope encoding (and provision for four categorization control bits), the categorization
procedure generates sixteen sets of categorizations (categorization 0 to categorization 15). Different
categorizations require different numbers of bits to encode the same MLT coefficients.

Each categorization consists of a set of fourteen category assignments, one assignment for each of
the fourteen regions. A category defines a set of predetermined quantization and coding parameters
for a region. Associated with each category is an expected number of bits required to encode a
region. Because this coder uses variable length Huffman coding, the final number of bits used will
vary depending on the particular sequence of MLT coefficients in the region.

4 Recommendation G.722.1 (09/99)

Next, the MLT coefficients are quantized and coded differently for each one of the sixteen computed
categorizations. For each categorization the actual number of code bits required is determined.

The quantization and encoding proceeds region by region. A categorization determines the category
assignment for all the fourteen regions, and the category assignment together with the amplitude
envelope for each region determine all of the quantization and coding parameters which will be used
for all twenty MLT coefficients in the region.

The MLT coefficients in a region are first normalized by the quantized amplitude envelope in the
region and then scalar quantized. The resulting scalar quantization indices are combined into vector
indices. The vector indices are then Huffman coded, i.e. they are coded with a variable number of
bits. The most frequent vector indices require fewer bits than the less frequent vector indices.

Because this codec uses variable length Huffman coding and a constant transmitted bit rate is
required, a method of constraining the bit rate to the channel rate is required. Four categorization
control bits identify to the decoder which categorization was selected. The categorization switch
directs the code bits (representing the quantized MLT coefficients produced using the selected
categorization) to the MUX for transmission. The categorization that results in providing the number
of bits closest to the channel rate is selected for transmission.

3.1 The Modulated Lapped Transform (MLT)

The MLT is a critically sampled, perfect reconstruction, linear transform with a 50 per cent overlap
between the basis functions of adjacent MLT frames. The inputs to each MLT are the most recent
640 audio samples, x(n),

where:

x (0) is the oldest sample,

and:

 0 ≤ n < 640

The MLT outputs 320 transform coefficients, mlt(m),

where:
 0 ≤ m < 320

The MLT is given by:

)()5.0)(5.159(
320

cos)5.0(
640

sin
320

2
)(

639

0

nxmnnmmlt
n






 +−π






 +π= ∑

=

The MLT can be decomposed into a window, overlap and add operation followed by a type IV
Discrete Cosine Transform (DCT). The window, overlap and add operation is given by:

 for)160()160()159()159()(nxnwnxnwnv +++−−= 1590 ≥≤ n

 for)639()()320()319()160(nxnwnxnwnv −−+−=+ 1590 ≥≤ n

where:

 for)5.0(
640

sin)(




 +π= nnw 3200 <≤ n

Combining v n() with a type IV DCT, the resulting expression for the MLT is:

)()5.0)(5.0(
320

cos
320

2
)(

319

0

nvmnmmlt
n






 ++π= ∑

=

 Recommendation G.722.1 (09/99) 5

Note that fast transform techniques are used to significantly reduce the complexity of the DCT.

3.2 Computing and quantizing the amplitude envelope

The MLT coefficients are divided into regions of twenty coefficients. Thus, the total
number_of_regions = 14. Region r includes MLT coefficients 20r through 20r + 19,

where:

0 ≤ r < number_of_regions

The forty highest frequency MLT coefficients, representing frequencies above 7 kHz, are not used
because they are outside the bandwidth of interest.

The amplitude envelope in the region r is defined as the RMS (Root-Mean-Square) value of the
MLT coefficients in the region, and is computed as

∑
=

++=
19

0

)20()20(
20

1
)(

n

nrmltnrmltrrms

It is then quantized. The quantizer output index is rms_index(r). The allowed set of quantization
reconstruction values are:






 +

2
2

2

i

 for integer values of i, 318 ≤≤− i

and rms_index(0) is further constrained so that

31)0(_1 ≤≤ indexrms

A log domain metric is used so that the values which get quantized to





 +

2
2

2

i

 range from






 +−

2
25.0

2

i

 to





 ++

2
25.0

2

i

.

For example, if rms(r) = 310, then the corresponding quantization level is





 +

2
215

2 or 362.04, and

rms_index(r) = 15, because





 +−

2
25.015

2 = 304.43.

3.3 Coding the amplitude envelope

rms_index(0) is the first value transmitted in each frame. Five bits are used. The most significant bit
of the index is transmitted first. The value, rms_index(0) = 0, is reserved and not used.

The indices of the remaining thirteen regions are differentially coded and then Huffman coded for
transmission. The largest differences which may be coded are +11 and −12. To contain the
differences within this range, the valleys are first adjusted upwards to allow the peaks which follow
them to be accurately represented. This is described in the following in pseudo C code:

 for (r = number_of_regions - 2; r > = 0; r--)
{

 if (rms_index[r] < rms_index[r + 1] - 11)
 rms_index[r] = rms_index[r + 1] - 11;
}

6 Recommendation G.722.1 (09/99)

for (r = 1; r < number_of_regions; r + +)
{
 j = rms_index[r] - rms_index[r - 1];
 if (j < - 12)

 {
 j = 12
 rms_index[r] = rms_index[r - 1] + j;
 }
 differential_rms_index[r] = j;

 }

The differences, differential_rms_index[r], are transmitted in order of region. They are coded in
accordance with the variable length Huffman codes defined in table
differential_region_power_codes[r][j + 12], and the table differential_region_power_bits[r][j + 12]
which defines the number of bits for each Huffman code. These arrays are contained in the C code
part of this Recommendation. Each region is associated with a unique set of Huffman codes. The
leftmost (or most significant) bit is always transmitted first.

3.4 Categorization procedure

The categorization procedure determines the step-sizes (and other related quantization and coding
parameters) used to quantize the MLT coefficients.

The process of categorization assigns a category to each of the regions. There are eight categories:
0-7. Sixteen different sets of categorizations are computed, and only one is selected for transmission.

The same categorization procedure is employed in the decoder. Hence, it is important for
interoperability that when provided with the same inputs, different implementations of this procedure
should produce identical categorizations. The inputs to this procedure are:

• number_of_available_bits: the actual number of bits in the frame still unused after
accounting for the amplitude envelope and categorization control bits.

• rms_index(): the set of quantized values of rms(r) for all regions.

The category assigned to a region determines the quantization and coding parameters for that region,
and the expected total number of bits required to represent the region’s quantized MLT coefficients.
Because variable length Huffman coding is used, the actual number of bits will vary depending on
the statistics of a region’s MLT coefficients. Hence, of the sixteen possible categorization sets
computed, according to criteria described later, the best fitting categorization will be selected for
transmission.

The expected number of bits for each category (0-7) is predefined in Table 1.

 Recommendation G.722.1 (09/99) 7

Table 1/G.722.1 – Expected number of bits for each category

category code bits per region as a function of category
(refer to expected_bits_table[] in the C code)

0 52

1 47

2 43

3 37

4 29

5 22

6 16

7 0

3.4.1 Adjusting the number of available bits

Based on the actual number of available bits, the following computes an estimation of the number of
available bits:

if:

number_of_available_bits > 320,

then:

 estimated_number_of_available_bits = 320 + ((number_of_available_bits − 320) * 5/8)

estimated_number_of_available_bits is always less than the actual number of bits to provide head
room in the categorization process.

3.4.2 Calculating the initial categorization

For any integer offset in the range −32 to 31, the assignment of categories is given by:

category(r) = MAX {0, MIN {7, (offset − rms_index(r))/2 }}

where:

0 ≤ r < number_of_regions.

The same offset is used for all regions. The total expected number of MLT code bits is:

expected_number_of_code_bits = ∑
=

13

0r

expected_bits_table(category(r))

The offset value is then adjusted until the largest offset found satisfies.

expected_number_of_code_bits ≥ estimated_number_of_available_bits − 32

3.4.3 Generating the other fifteen categories

Once the initial categorization has been computed, the fifteen other categorizations must then be
calculated. For each new categorization the category is adjusted in only one region relative to the
previous categorization. The method for determining the remaining categorizations now follows:

initial_categorization(r) = MAX {0, MIN {7, (offset − rms_index(r))/2}}

where:

 0 ≤ r < number_of_regions

8 Recommendation G.722.1 (09/99)

create the temporary variables:

 max_category(r)
 max_bits

 min_category(r)
 min_bits

 max_category(r) = initial_categorization (r)
 min_category(r) = initial_categorization (r)

 max_bits = expected_number_of_code_bits
 min_bits = expected_number_of_code_bits.

Then for each of the remaining fifteen categorizations, the following comparison is performed,

if:

 max_bits + min_bits ≤ 2 * estimated_number_of_available_bits

then:

 a new categorization is required with a larger expected number of bits.

 For the regions, r, for which

max_category(r) > 0

 find the region which minimizes the function

offset − rms_index(r) − 2 * max_category(r)

 If there are several regions for which this function is equally small, then set r equal to
the smallest (i.e. lowest frequency) such region.

 The category for this region in max_category(r) is then decreased by one; the expected
number of bits for this new categorization is re-computed and max_bits is set equal to it.

Otherwise:

a categorization with a smaller expected number of bits is required.

For the regions, r, for which

min_category(r) < 7

find the region which maximizes the function

offset − rms_index[r] − 2 * min_category(r)

If there are several regions for which this function is equally large, then set r equal to the
largest (i.e. highest frequency) such region.

The category for this region in min_category(r) is then increased by one; the expected
number of bits for this new categorization is re-computed and min_bits is set equal to it.

In this way, sixteen unique categorizations are produced. They are ordered according to their
expected number of bits as detailed in clause 6. Categorization 0 has the largest expected number of
bits and categorization 15 the smallest. Each categorization is the same as its neighbouring
categorization, except in one region where the category entry will differ by one, e.g. region 5 of
categorization 7 may have a category of 2, and in categorization 8 region 5 may have category 3,
while being equal to categorization 7 in the other regions.

A detailed flow chart of the categorization procedure is provided in clause 6.

 Recommendation G.722.1 (09/99) 9

3.5 Scalar Quantized Vector Huffman Coding (SQVH)

For regions assigned category values 0-6, the MLT coefficients are separated into sign and
magnitude parts. The magnitude parts are normalized by the quantized value of rms(r), then scalar
quantized with dead zone expansion, combined into vectors, and Huffman coded. Regions that are
assigned a category 7 are not processed in this way at all, and are not allocated any bits for
transmission.

For each region, r, the encoder first normalizes and quantizes the absolute value of each MLT
coefficient, mlt(i), to produce quantization index, k(i):

k(i) = MIN {whole number part of (x * absolute value of (mlt(20r + i)) + deadzone_rounding),kmax}

where the index within a particular region is:

0 ≤ i < 20

and:

x = 1/(stepsize * (quantized value of rms(r))

and:

 stepsize, deadzone_rounding, and kmax are given in Table 2.

Table 2/G.722.1 – Table of constants used by the SQVH procedure

category stepsize deadzone_rounding kmax

0 2−1.5 0.3 13

1 2−1.0 0.33 9

2 2−0.5 0.36 6

3 20.0 0.39 4

4 20.5 0.42 3

5 21.0 0.45 2

6 21.5 0.5 1

The indices, k(), are combined into vector indices; the properties of the vectors differ for each
category. In each region there are vpr predefined vectors with dimension vd as defined in Table 3,
and illustrated in Figure 3. The set of scalar k() values correspond to a unique vector identified by an
index as follows:

vector_index(n) =))1((
1

0

)1()(+−
−

=
++×∑ jvd

vd

j

kmaxjvdnk

where: 0 ≤ n ≤ vpr − 1, represents the nth vector in the region r

and:

 j = index to jth value of k() in a given vector, in a given region

 vd = vector dimension for given category

 vpr = number of vectors per region for a given category

 kmax = maximum value of k() for a given category as shown in Table 2.

10 Recommendation G.722.1 (09/99)

T1606860-99

k(
i)

i0 10 19

n = 0, associated with
vector_index(0), vd = 5

n = 3, associated with
vector_index(3), vd = 5

NOTE – Each vector represents vd quantized MLT coefficients.

Figure 3/G.722.1 – An example illustrating how a region, assigned a category of 6,
is split into a series of five dimensional vectors (vd = 5)

with four vectors per region (vpr = 4 and 0 ≤ n < 4)

Table 3 provides the values for vd, vpr and u, where u = (kmax + 1)vd represents the number of
distinct values a vector may have in any given category.

Table 3/G.722.1 – Definition of constants vd, vpr and u

category vd vpr u

0 2 10 196

1 2 10 100

2 2 10 49

3 4 5 625

4 4 5 256

5 5 4 243

6 5 4 32

The number of bits required to represent a vector, vector_index(n), for a given category is provided
by tables mlt_sqvh_bitcount_category_0[] to mlt_sqvh_bitcount_category_6[]. These tables also
provide the number of bits required by the corresponding code word entries in the tables
mlt_svqh_code_category_0[] to mlt_svqh_code_category_6[]. These bit counts do not include the
sign bits. The values of k() = 0 do not require sign bits:

The number of bits actually required (including sign bits) to represent the MLT coefficients for a
region, r, of a given category, y, is given by:

number_of_region_bits(r) = ∑
−

=

1

0

vpr

n

mlt_svqh_bitcount_category_y(vector_index(n))

+ (number of sign bits in nth vector)

 Recommendation G.722.1 (09/99) 11

3.6 Rate control

The total number of bits actually required to represent the frame is computed for each categorization.
This includes the bits used to represent the amplitude envelope, the four categorization control bits,
and the bits required for the MLT coefficients. It then remains to select the best categorization for
transmission and indicate this selection using the categorization control bits.

First, categorizations with bit totals in excess of the allotment are ruled out. Of the remaining
categorizations the one with the lowest index is selected, e.g. when categorizations 0 through 3 use
too many bits and categorization 4 fits within the bit allotment, categorization 4 is selected.

If no categorization yields a bit total that fits within the allotment, the categorization that comes
closest (normally 15) is selected. Then, code bits are transmitted until the allotment for the frame is
exhausted.

It may happen that the number of bits required by the encoder to represent one 20 ms frame of audio
is less than the allowed number of bits per frame (480 or 640 bits). In this case the remaining unused
bits at the end of the bit stream sequence are all set to one.

3.7 Transmission of the MLT vector indices

The vector indices are transmitted in frequency order – low to high frequency. They are coded in
accordance with the variable length codes defined by the C code array
mlt_svqh_bitcount_category_x[] and mlt_svqh_code_category_x[] (where _x represents the category
value, 0 ≤ x ≤ 6). The leftmost (or most significant) bits are transmitted first. The sign bits, relating
to the non-zero MLT coefficients of each vector, are transmitted immediately following the
respective vector index variable length code. The sign bits are also transmitted in frequency order.
The sign bit is set to "1" for positive numbers.

3.8 Bit stream

The total number of bits in a frame is either 480 or 640 bits, for the bit rates of 24 kbit/s and 32 kbit/s
respectively. While the number of bits in a frame is fixed, except for the categorization control bits
parameter, all other parameters are represented by variable length codes − or a variable number of
bits. Figure 4 illustrates this point, and the order of the transmitted parameter fields. All variable
length codes, and the categorization control bits, are transmitted in order from the left most (most
significant) bit to the right most (least significant) bit.

T1606870-99

variable number of bits variable number of bits4 bits

first bit last bit

amplitude
envelope bits

categorization
control bits

MLT
coefficients bits

Figure 4/G.722.1 – Major bit stream fields and their order in transmission

4 The decoder

First for every frame, the first five bits, representing the amplitude index for region zero, are
decoded. Then the remaining regions are Huffman decoded and reconstructed. The four
categorization control bits can then be decoded to determine which of the sixteen possible
categorizations was selected and transmitted by the encoder. The remaining code bits in the frame

12 Recommendation G.722.1 (09/99)

represent the quantized MLT coefficients and they are decoded according to the category
information for each region. Just like in the encoder, the categorization procedure in the decoder uses
the amplitude envelope together with the number of bits remaining to be decoded (in the current
frame) and computes the set of sixteen possible categorizations.

Some regions may have been assigned a category of 7 by the encoder. This means that no MLT
coefficients were transmitted to represent these regions. The category 7 regions are reconstructed
using a technique called noise-fill. The average MLT magnitude for these regions is available from
the amplitude envelope. Instead of setting the category 7 MLT coefficients to zero, the decoder sets
the value of their amplitude proportional to the average MLT coefficient magnitude for the region,
and the sign of each coefficient is set randomly. Determining the coefficient signs may be done by
one of a number of methods; a simple pseudo-random number generator is sufficient.

Noise-fill is also applied to categories 5 and 6, because for these categories many of the MLT
coefficients may be quantized to zero. The values which were transmitted as zero are set to small
fractions of the average magnitude for the region. Again, the signs are determined randomly.

For those coefficients that were scalar quantized to non-zero values, a predetermined table contains
reconstruction values of the normalized coefficients. The reconstructed values are then scaled using
the appropriate value of rms(r). The forty MLT coefficients representing frequencies above 7 kHz
are set to zero. After reconstruction of the MLT coefficients, the Inverse Modulated Lapped
Transform (IMLT) generates 320 new time domain samples.

Except for the final overlap and add operation of the IMLT, the information received in each frame
by the decoder is independent of the information in the previous frame.

4.1 Decoding the amplitude envelope

The first five bits of the frame represent rms_index(0). Then, for the remaining regions, the variable
length codes for differential_rms_index(r) are decoded according to the arrays
differential_region_power_bits[][] and differential_region_power_codes[][] referenced in the
C code; the quantizer indices for these regions are reconstructed as follows:

rms_index(r) = rms_index(r − 1) + differential_rms_index(r),

where:

1 ≤ r < number_of_regions.

4.2 Determining categorization

After decoding the amplitude envelope, the decoder determines the number of bits remaining to
represent the MLT coefficients, this is done as follows:

bits available = bits per frame – amplitude envelope bits – four(categorization control bits)

Using the same categorization procedure as the encoder, the same set of sixteen possible
categorizations is computed. The four categorization control bits indicate which categorization was
used to encode the MLT coefficients, and consequently should also be used by the decoder.

4.3 Decoding MLT coefficients

For each region, the variable length codes representing the MLT vectors are decoded according to
the appropriate category tables. The arrays mlt_svqh_bitcount_category_x[] and
mlt_svqh_code_category_x[] are used for this purpose in the C code. (Where _x represents the
category value, 0 ≤ x ≤ 6.) The individual MLT coefficient quantization indices, k(i), in a region are
recovered from the vector index as follows:

 Recommendation G.722.1 (09/99) 13

)1(
)1(

)(_
)(+













+
= kmaxMOD

kmax

nindexvector
ik

j

where:

  z indicates taking the greatest integer value less than or equal to z

 i = (n + 1)vd − j − 1
 0 ≤ j ≤ vd − 1
 0 ≤ n ≤ vpr−1, represents the nth vector in the region r,

and:

 vd = vector dimension for a given category
 kmax = maximum value of k() for a given category as shown in Table 2.

Reconstruction of the MLT coefficients uses the centroid tables in the C code array
mlt_quant_centroid[][]. The MLT coefficient amplitudes are reconstructed by computing the product
of rms(r), in the region of interest, and the centroid specified by the decoded vector index. Non-zero
values have their signs set according to the sign bit.

4.4 Noise-fill

No MLT coefficient amplitudes are encoded for regions assigned category 7. For categories 5 and 6
the large quantizer step sizes result in most MLT coefficients being coded as zero; these zeroes are
replaced with coefficient values of random sign and amplitude proportional to rms(r). The
proportionality constants are defined in Table 4.

Table 4/G.722.1 – Noise-fill proportionality constants

category default noise-fill proportionality constant

5 0.176777

6 0.25

7 0.707107

4.5 Insufficient bits

There may be frames for which the encoder ran out of bits before it finished coding the last
non-category 7 region. The decoder action in these cases is to process that region and all remaining
regions with a category 7 assignment.

4.6 Frame erasure

If the decoder is informed (by means of an external signalling mechanism not defined in this
Recommendation) that a frame has been lost or corrupted, it repeats the previous frame’s decoded
MLT coefficients. It proceeds by transforming them to the time domain, and performing the overlap
and add operation with the previous and next frame’s decoded information. If the previous frame was
also lost or corrupted, then the decoder sets all the current frames MLT coefficients to zero.

4.7 The Inverse MLT (IMLT)

Each IMLT operation operates on 320 coefficients to produce 320 time domain audio samples. The
IMLT can be decomposed into a type IV DCT followed by a window, overlap and add operation.

14 Recommendation G.722.1 (09/99)

The type IV DCT is:

)()5.0)(5.0(
320

cos
320

2
)(

319

0

mmltnmnu
m






 ++π= ∑

=

The window, overlap and add operation uses half of the samples from the current frame’s DCT
output with half of those from the previous frame’s DCT output:

 y(n) = w(n)u(159 − n) + w(319 − n)u_old(n) for 0 ≤ n ≤ 159

 y(n + 160) = w(160 + n)u(n) − w(159 − n)u_old(159 − n) for 0 ≤ n ≤ 159,

where:






 +π=)5.0(

640
sin)(nnw for 0 ≤ n ≤ 319

 The unused half of u() is stored as u_old() for use in the next frame:

u_old(n) = u(n + 160) for 0 ≤ n ≤ 159

5 C code

The attached C code, which is an integral part of this Recommendation, is divided into a number of
files. Those files are now listed.

basic_op.c
coef2sam.c
common.c
count.c
dct4_a.c
dct4_s.c
decode.c
decoder.c
dct4_a.h
encode.c
encoder.c
huff_tab.c
sam2coef.c
tables.c
basic_op.h
count.h
dct4_s.h
defs.h
huff_def.h
huff_tab.h
tables.h
typedefs.h

Once the stand-alone program is compiled into the encoder file, encode, and the decoder file,
decode, then the command line format for using the coder is as follows:

encode bit-stream-type input-audio-file output-bit-stream-file bit-rate
decode bit-stream-type input-bit-stream-file output-audio-file bit-rate

 Recommendation G.722.1 (09/99) 15

where:

bit-stream-type = 0, specifies using the compacted bit stream
bit-stream-type = 1, specifies using the Recommendation G.192 bit stream format for

 test purposes
input-audio-file = name of 16 bit PCM audio file to read samples from
output-audio-file = name of 16 bit PCM audio file to save decoded output
input-bit-stream-file = name of file to read the input bit stream from
output-bit-stream-file = name of file to save the encoded bit stream output
bit-rate = 24 000 or 32 000, for 24 kbit/s and 32 kbit/s operation respectively.

6 Flow chart of categorization procedure

This clause describes in detail the procedure for the categorization computation used by both the
encoder and decoder. The procedure is divided into twenty-five steps which may be represented as a
flow chart.

The following variable is defined and referred to in this clause:

category.X[r]

is the category assigned to region r for categorization X,

where:

 0 ≤ X < 16

 0 ≤ r < 14 (number_of_regions)

 0 ≤ category.X[r] ≤ 7

STEP (0)

Compute the number of available bits by starting with the allotted number of bits per frame (e.g. 480
for 24 kbit/s operation). Then subtract the number of bits used to represent the amplitude envelope,
and subtract the four categorization control bits used to represent the categorization selection. Then
modify this number as follows:

if:

number_of_available_bits > 320,

then:

estimated_number_of_available_bits = 320 + ((number_of_available_bits – 320) * 5/8)

(This compensates for differences in the statistics associated with category assignments at different
bit rates.)

STEP (1)

Allocate the temporary arrays:

initial_categorization[number_of_regions]
max_category[number_of_regions]
min_category[number_of_regions]
temp_category_balances[32]

16 Recommendation G.722.1 (09/99)

Allocate the temporary variables:

offset
delta
expected_bits
max_expected_bits
min_expected_bits
max_pointer
min_pointer
categorization_count

STEP (2)

Initialize:

offset = −32
delta = 32

STEP (3)

Compute unbounded category assignments for each region:

initial_categorization[r] = (offset + delta − rms_index[r])/2

STEP (4)

Bound initial_categorization[] for each region:

if

 initial_categorization[r] < 0

then

 initial_categorization[r] = 0

if

 initial_categorization[r] > 7

then

 initial_categorization[r] = 7

STEP (5)

expected_bits_table[8] is a predetermined table containing an average bit count for each category. It
is used to compute the expected total bit count for this categorization:

 expected_bits = ∑
−

=

1__

0

regionsofnumber

r

 expected_bits_table[initial_categorization[r]]

STEP (6)

if

 expected_bits ≥ estimated_number_of_available_bits − 32,

then

 offset = offset + delta.

STEP (7)

delta = delta/2

 Recommendation G.722.1 (09/99) 17

STEP (8)

if

 delta > 0,

then

 go to STEP (3),

otherwise

 continue on to STEP (9).

STEP (9)

initial_categorization[r] = (offset − rms_index[r])/2

STEP (10)

Bound initial_categorization[r] for each region as done in STEP (4).

STEP (11)

Compute expected_bits for inital_categorization[] as in STEP (5).

STEP (12)

Initialize:

 max_category[r] = initial_categorization[r]
 min_category[r] = initial_categorization[r]

 max_bits = expected_bits
 min_bits = expected_bits

 max_pointer = 16
 min_pointer = 16
 categorization_count = 1

STEP (13)

if

 max_bits + min_bits ≤ 2 * estimated_number_of_available_bits

then

 go to STEP (14)

otherwise

 go to STEP (16)

STEP (14)

For the regions, r, for which

 max_category[r] > 0

find the region which minimizes the function

 offset − rms_index[r] − 2 * max_category[r]

If there are several regions for which this function is equally small, then set r equal to the smallest
(i.e. lowest frequency) such region.

18 Recommendation G.722.1 (09/99)

STEP (15)

 max_pointer = max_pointer − 1
 temp_category_balances[max_pointer] = r
 max_bits = max_bits − expected_bits_table[max_category[r]]
 max_category[r] = max_category[r] − 1
 max_bits = max_bits + expected_bits_table[max_category[r]]

 go to STEP (18)

STEP (16)

For the regions, r, for which

 min_category[r] < 7

find the region which maximizes the function

 offset − rms_index[r] − 2 * min_category[r]

If there are several regions for which this function is equally large, then set r equal to the largest
(i.e. highest frequency) such region.

STEP (17)

 temp_category_balances[min_pointer] = r
 min_pointer = min_pointer + 1
 min_bits = min_bits − expected_bits_table[min_category[r]]
 min_category[r] = min_category[r] + 1
 min_bits = min_bits + expected_bits_table[min_category[r]]

STEP (18)

 categorization_count = categorization_count + 1

if:

 categorization_count < 16

then:

 go to STEP (13)

otherwise:

 go to STEP (19)

STEP (19)

Copy max_category[] to category.0 [].

For all regions

 Category.0 [r] = max_category[r]

STEP (20)

 n = 1

STEP (21)

Copy the contents of the (n − 1)th categorization to the nth categorization:

for all regions

 category. n[r] = category.n −1[r]

 Recommendation G.722.1 (09/99) 19

STEP (22)

Increment the category assignment for the one region indicated by the array
temp_category_balances[max_pointer]:

 category.n [temp_category_balances[max_pointer]] =
 category.n [temp_category_balances [max_pointer]] + 1

STEP (23)

 max_pointer = max_pointer + 1
 n = n + 1

STEP (24)

if:

 n < 16

then:

 go to STEP (21)

otherwise:

 END

Printed in Switzerland

Geneva, 2000

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

