ITU-T Software Tool Library 2000 User’s Manual

ITU-T Users’ Group on Software Tools

Geneva, December 2000

Copyright © 2000, 2001 by the International Telecommunication Union (ITU)

This is edition 1.0 of the “IT'U-T Software Tool Library Manual’, for the 2000 release of
the ITU-T Software Tool Library, distribution 3.0, February 25, 2001.

Published by the ITU. Copies of this manual are available as part of the STL2000 distri-
bution. STL2000 copies can be acquired from:

ITU General Secretariat

Sales Service

Place du Nations

CH-1211 Geneve 20

Switzerland

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Contents

1 Introduction 1
1.1 Organization of the Software Library 2
1.2 Who to contact 3
1.3 Acknowledgements 3

2 Tutorial 5
2.1 AcCronyms e 5
2.2 Definition of termso 6

2.2.1 Overload point 6
2.2.2 Signalpower 6
2.2.3 Signallevel 7
2.2.4 Relation between overload and maximum levels 7
2.2.5 Saturation 8
2.2.6 Data representation 8
2.2.7 Data justificationo o 8
2.2.8 Equivalent results o o 9
2.2.9 Little- and big-endian data ordering 9
2.3 Guidelines for software tool development 12
2.4 Software module I/O signal representation 14
2.5 Tool specifications 16

3 RATE-CHANGE: Up- and down-sampling module 19

3.1 Description of the Algorithm 19
3.1.1 High-quality 20
3.1.2 Telephony-band weighting 21
3.1.3 Wideband weighting L. 24
3.1.4 Noise weighting oo o 24

i

ITU-T Software Tool Library, release 2000
3.1.5 PCM Quality 24
3.2 Implementation 25
321 FIRmodule 27
3.22 IIR Module 49
3.3 Tests and portability oo 59
3.4 Examples 60
3.4.1 Description of the demonstration programs 60
3.4.2 Example: Calculating frequency responses 60
EID: Error Insertion Device 65
4.1 Description of the Algorithm 65
4.1.1 Simple Channel Model 65
4.1.2 The Bellcore Model o 67
4.2 TImplementation Lo L 69
421 openeid 72
422 openbursteid L Lo 72
423 resetbursteid Lo 73
424 close_eid 73
4.2.5 BER_generator 73
4.2.6 FER_generator_random 74
4.2.7 FER_generator_burst 74
4.2.8 BER_imsertion 75
429 FERmodule 76
4.3 Tests and portabilityo oo 7
4.4 Examples 7
4.4.1 Description of the demonstration programs 7
4.4.2 Using the bit error insertion routine 78
4.4.3 Using the frame erasure routine 80
G.711: The ITU-T 64 kbit/s log-PCM algorithm 83
5.1 Description of the algorithm 83
5.2 Implementation 85
5.2.1 alaw_compress and ulaw_compress 86
5.2.2 alaw_expand and ulaw_expand 86
5.3 Tests and portability o o 87

Version: February 25, 2001 iii

5.4

Example codeo 87
5.4.1 Description of the demonstration program 87
5.4.2 Simple example oL 87

6 G.726: The ITU-T ADPCM algorithm at 40, 32, 24, and 16 kbit/s 89

6.1

6.2

6.3
6.4

Description of the 32 kbit/s ADPCM 90
6.1.1 PCM format conversion 90
6.1.2 Difference Signal Computation 90
6.1.3 Adaptive Quantizer 91
6.1.4 Inverse Adaptive Quantizer 91
6.1.5 Quantizer Scale Factor Adaptation 91
6.1.6 Adaptation Speed Control 91
6.1.7 Adaptive Predictor and Reconstructed Signal Calculator 92
6.1.8 Tone Transition and Detector 92
6.1.9 Output PCM Format Conversion 92
6.1.10 Synchronous Coding Adjustment 92
6.1.11 Extension for linear input and output signals 93
ITU-T STL G.726 Implementation 93
6.2.1 G726_encode 94
6.2.2 G726_decode 95
Portability and compliance L0000 96
Example code 97
6.4.1 Description of the demonstration programs 97
6.4.2 Simple example 97

7 G.727: The ITU-T embedded ADPCM algorithm at 40, 32, 24, and 16

kbit/s 99
7.1 Description of the Embedded ADPCM 99
7.1.1 Extension for linear input and output signals. 99
7.2 ITU-T STL G.727 Implementation 101
721 G727_reset 101
7.2.2 G727_encode 101
7.2.3 G727_decode 102
7.3 Portability and compliance 0oL 103
7.4 Examplecode 103

iv

ITU-T Software Tool Library, release 2000

7.4.1 Description of the demonstration program 103
7.4.2 Simpleexample 103

8 G.722: The ITU-T 64, 56, and 48 kbit/s wideband speech coding algo-

rithm 105
8.1 Description of the 64, 56, and 48 kbit/s G.722 algorithm 105
8.1.1 Functional description of the SB-ADPCM encoder 107
8.1.2 Functional description of the SB-ADPCM decoder 109

8.2 ITU-T STL G.722 Implementation 111
8.2.1 g722_,encode 114
8.2.2 gr22.decode 115
8.2.3 gr22.reset_encoder 115
8.2.4 g722reset.decoder 116

8.3 Portability and complianceo oo 116
8.4 Examplecode 117
8.4.1 Description of the demonstration programs 117
8.4.2 Simpleexample L L 117

9 RPE-LTP: The full-rate GSM codec 119
9.1 Description of the 13 kbit/s RPE-LTP algorithm 119
9.1.1 RPE-LTP Encoder 119
9.1.2 RPE-LTP Decoder 121

9.2 Implementation 121
9.2.1 rpeltp_encode 124
9.2.2 rpeltpdecode 124
9.23 rpeltp_init 125
9.2.4 rpeltpdelete 125

9.3 Portability and complianceo 0oL 126
9.4 Examplecode 126
9.4.1 Description of the demonstration program 126
9.4.2 Simple exampleo 126

10 Duo-MNRU: The Dual-mode Modulated Noise Reference Unit 129
10.1 Description of the Algorithm 130

10.2 Implementation L 132

Version: February 25, 2001 v

10.2.1 MNRU_PTOCESS o v vt ittt e e e e e e e 139
10.3 Portability and compliance o000 oL 140
10.4 Example code L 141
10.4.1 Description of the demonstration programs 141
10.4.2 Simple example L 141
11 SVP56: The Speech Voltmeter 143
11.1 Description of the Algorithm 143
11.2 Implementation 146
11.2.1 init_speech_voltmeter 147
11.2.2 speech_voltmeter 147
11.2.3 Getting state variable fields 148
11.3 Portability and complianceo 148
11.4 Examples Lo e 149
11.4.1 Description of the demonstration programs 149
11.4.2 Small example 149
12 ITU-T Basic Operators 153
12.1 Overview of basic operator libraries 153
12.2 Description of the 32-bit basic operators and associated weights 153
12.2.1 Variable definitionso L 153
12.2.2 Arithmetic operators with complexity weight of 1 154
12.2.3 Arithmetic operations with complexity weight of 2. 156
12.2.4 Arithmetic operations with complexity weight of 3. 158
12.2.5 Arithmetic operations with complexity weight of 4 159
12.2.6 Arithmetic operations with complexity weight of 15 159
12.2.7 Arithmetic operations with complexity weight of 18 159
12.2.8 Arithmetic operations with complexity weight of 30 159
12.2.9 Complexity associated with data moves, logical operations, arith-
metic test and other operations 160
13 UTILITIES: UGST utilities 163
13.1 Some definitions Lo 163
13.2 Implementation 164
13.2.1 scale e 164

vi

13.2.2
13.2.3
13.2.4
13.2.5
13.2.6

ITU-T Software Tool Library, release 2000

serialize_*x_justified

parallelize x_justified

13.3 Portability and compliance L.

13.4 Example code

13.4.1
13.4.2
13.4.3
13.4.4

14 References

Description of the demonstration programs
The master header file for the STL demonstration programs
Short and float conversion and scaling routines

Serialization and parallelization routines

A Unsupported tools

A.1 Source
A.2 Scripts

code . . .o

A3 Makefiles
A4 Test files

B Future work

177

181
181
182
182
182

185

Chapter 1

Introduction

In July 1990, Study Group XV of the then CCITT decided to set up a group to deal with
the development of common software tools to help in the development of speech coding
standards. In the same period, cooperation was requested with SG XII Speech Quality
Experts Group (SQEG), and a group called ‘User’s Group on Software Tools’ (UGST)
was initially established with almost 20 corresponding members. The basic means of
interaction was (then incipient) electronic mail (e-mail) messages, for the exchange of
files and experiences. In addition to this, there were meetings held mainly during regular
Working Party XV /2 (Signal Processing) sessions, where most of the decisions were made.

As result of that very intensive work, several software tools evolved forming the ‘1992 I'TU-
T Software Tool Library (STL92) which included, as its first application, the Qualification
Test for a Speech Coder at 8 kbit/s. After this initial release, another release was approved
by ITU-T Study Group 15 in May, 1996, and called STL96. The STL96 introduced
substantive improvement and new features to the STL92. In November 2000, ITU-T Study
Group 16 approved an updated version to the STL, the STL2000, which is described in
this document. Terms and conditions on the usage of the ITU-T STL are found in ITU-T
Recommendation G.191 [1].

The remaining chapters of this document describe the principles that guided the genera-
tion of the ITU-T STL, as well as the description of its organization. The various tools
are described in separate chapters. These descriptions have the following general outline:

a. technical description of the method or algorithm involved;

b. description of the algorithm implemention in this release (including prototypes,
parameters, returned value, etc.); and

c. testing, applications and examples.

All the STL modules had their portability tested for MSDOS/Windows and several Unix
flavors. In MSDOS, all modules were tested with the MSDOS port of the GNU gcc
compiler (a.k.a. DJCPP) and with at least one of these Borland compilers: Turbo C
2.0, Turbo C++ 2.0, or Borland C++ 3.1. In the Windows environment, the code was
tested using MS Visual C version 6.1 SP3 as well as using the gcc compiler available
in the Cygnus CYGWIN development environment (www.cygnus.com). The VAX/VMS
environment was fully supported in the STL96 (VAXC and gcc), however it was not
possible to continue it for the STL2000 due to operational reasons. However, compilation

2 ITU-T Software Tool Library, release 2000

under gcc should provide the expected results. It should be noted however that some
tools were tested for Ultrix. For the Unix operating system, portability was verified for
three workstation platforms: Sun Solaris 5.7 (SPARC or Intel CPUs, using gec), HP 9000
Series 700 HPUX 9.05 or 10.20 (using gcc), and Silicon Graphics. On Silicon Graphics
systems, the standard cc compiler was used.

1.1 Organization of the Software Library

Each tool of the STL has been produced as a stand-alone module, such that it may be
linked to a user’s program, application or system. In the present version, there are several
of these modules:

1. RATE-CHANGE: An up- and down-sampling algorithm with embed-
ded filterings:
e ITU-T Rec. G.712 filter for factors of 1:2, 2:1 and 1:1
e High-quality filter for factors 1:2, 2:1, 1:3, and 3:1

e IRS send-side weighting filter, for several sampling rates: 8, 16, and
48 kHz. This includes the “full-IRS” as in I'TU-T Rec. P.48 as well
as the “modified” IRS as in Annex D of ITU-T Rec. P.830.

o Modified-IRS receive-side filter is also available for 8 and 16 kHz
sampled data.

e Ag)s weighting filter for near-to-far field conversion

e Psophometric weighting filter of ITU-T Rec. O.41 for noise measure-
ments

e ITU-T P.341 weighting filter for wideband signal (50-7000 Hz)

2. EID: Error insertion algorithm, with routines for generation of bit error
patterns (random or burst) as well as random and burst frame erasure.

3. G.711: The 64 kbit/s PCM algorithm with A and p law of ITU-T Rec.
G.711.

4. G.726: The 40, 32, 24, and 16 kbit/s ADPCM algorithm of ITU-T Rec.
G.726.

5. G.727: The 40, 32, 24, and 16 kbit/s embedded ADPCM algorithm of
ITU-T Rec. G.727.

6. G.722: The 64, 56, and 48 kbit/s wideband speech ADPCM algorithm
of ITU-T Rec. G.722.

7. RPE-LTP: The 13 kbit/s RPE-LTP algorithm of the full-rate GSM
system (GSM Rec. 06.10).

8. MINRU: The modulated noise reference unit of ITU-T Rec. P.810 (for-
merly ITU-T Rec. P.81).

9. SVP56: The Speech Voltmeter for measuring the active speech level
(which skips over silence in a utterance) of ITU-T Rec. P.56.

Version: February 25, 2001 3

10. BASOP: The set of basic digital signal processing (DSP) operators that
represent the set of instructions typically available in digital signal pro-
Cessors.

11. UTILITIES: Tools that have been developed to assure proper interfac-
ing between the various tools. These tools do not relate to any I'TU-T
Recommendation. Included are tools for conversion between float and
short data representations, between parallel and serial (bit-stream) for-
mats, and for scaling of data.

It should be noted that C code is available for a number of codecs as a normative part
of the respective standards, e.g. ITU-T G.723.1, G.729, G.722.1; ETSI GSM-HR, GSM-
EFR, GSM-AMR; TIA IS-641, IS-127, IS-96A, among others. These source codes are
not appropriate for inclusion in the ITU-T STL for a number of reasons: they are an
integral part of the respective standards, are maintained within the scope of the respective
standards development organizations (SDOs), are protected by copyrights, and are openly
available. Parties interested in acquiring these source codes should contact the appropriate
SDO.

1.2 Who to contact

In case of problems with any of the tools, the UGST coordinator is identified as the
contact point. In addition to the description of the problem, it is recommended that the
user’s address should be sent to the contact point, so that the user can be kept informed
of changes and new releases of the ITU-T Software Tool Library. The address is:

Simao Ferraz de Campos Neto

Lockheed Martin Global Telecommunications (LMGT)
22300 COMSAT Drive

Clarksburg, MD 20871

United States

Fax: +1-301-428-9287

E-mail: simao.campos@labs.comsat.com

1.3 Acknowledgements

Several organizations which participate in [TU-T Study Groups 12, 15 and 16 have sub-
stantially contributed to the completion of this release of the ITU-T STL.

First and foremost, UGST wishes to thank CPqD/Telebrds (Brazil) for its support of
the early coordination (1990-1993) of the activity and of the development of the follow-
ing tools: Utilities, G.711, G.726, MNRU, and SVP56. For the first two, the work was
shared with PKI (Germany), which also provided the initial version of the modules EID
and RATE-CHANGE, as well as basic material that supported the initial organization of
the work, together with Telenor (formerly NTA, Norway) and the DBP-Telekom (Ger-
many). DBP-Telekom also collaborated in providing several software tools used in the
Host Laboratory for the ITU-T 8 kbit/s speech coder: modified IRS filters, adaptation

4 ITU-T Software Tool Library, release 2000

of the Bellcore burst frame erasure model, and Ag,, filter. UGST also wants to thank
CSELT (Italy) for making available its Fortran MNRU program, which was the starting
point of the present implementation, and for the implementation of the psophometric
filter. CNET (France) provided the G.722 tool, which was greatly appreciated. UGST
kindly thanks Mr. Jutta Deneger for allowing the incorporation of his implementation of
the RPE-LTP algorithm in the STL. Also, Bellcore provided several programs in Fortran
and C that, while not used directly in the present version of the STL, were important
in various stages of the development of the Library, especially a version of the Red Book
G.721. PTT Ukraine graciously provided the G.727 implementation, which was warmly
welcomed. COMSAT Labs (now part of Lockheed Martin Global Telecommunications,
LMGT), in turn, provided essential help in funding the recent coordination work (1994-
current), and the harmonization and documentation of the tools. Also important was the
testing work done by the Research Institute of the Deutshes Telekom (now T-Nova/DT),
as well as PKI, Telebrds, AT&T (USA), and CNET.

Several parts of this manual were possible only by the contribution of several individuals:
Pierre Combescure (CNET) for the description of the G.722 algorithm, Rudolf Hofmann
(PKTI), for description the Gilbert-Elliot channel implemented in the EID module, Peter
Kroon (AT&T) for the description of the RPE-LTP algorithm, and Vijay Varma (Bellcore)
for the text describing the Bellcore Burst Error Model. It is also necessary to thank all
UGST members that collaborated to make this version of the STL Manual more accurate.

Chapter 2

Tutorial

2.1 Acronyms

Several acronyms are used in this text. The most important are:

ANSI ...
BBER ..
BER
BFER ..
DAT
EID ...
ETSI ...
FER
GSM ...

SQEG ..
STLI92 ..
STLIG6 ..
STL2000
UGST ..

American National Standards Institute.
Burst Bit Error Rate

Bit Error Rate (refers to random bit errors)
Burst Frame Erasure Rate

Digital Audio Tape.

. Error insertion device.

European Telecommunications Standards Institute.

Frame Erasure Rate (refers to random frame erasures)

Global System for Mobile Communications. Pan-European digital-cellular sys-
tem operating at a net rate of 13 kbit/s in its full-rate system.

Intermediate Reference System, defined in ITU-T Rec. P.48 for the so-called
“full-TRS” mask, or in Annex D of ITU-T Rec. P.830 for the so-called “modi-
fied” IRS mask.

. International Telecommunication Union.
. Standardisation Sector of the International Telecommunication Union.

Least significant bit.

. Modified-IRS telephony speech weighting (in ITU-T Rec. P.830 Annex D).
. Most significant bit.

Public Switched Telecommunication Network.

Requirements and Objectives, for performance of software tools.
Speech Quality Experts Group, of Study Group 12 of the ITU-T.
ITU-T Software Tools Library, release 1992.

ITU-T Software Tools Library, release 1996.

ITU-T Software Tools Library, release 2000.

Users’ Group on Software Tools, of Study Group 16 of the [TU-T.

6 ITU-T Software Tool Library, release 2000

2.2 Definition of terms

In the documentation of the ITU-T software tools, several terms are widely used and are
defined below.

2.2.1 Overload point

The overload point within the digital domain is defined by the (normalized) amplitude
value.

A
x_over = 1.0

How this overload point relates to the analogue world depends on the conversion method
between the analog and digital domains, and is beyond the scope of this document. All
signals in this manual are relative to this overload point in the digital domain.

NOTE: This overload point does NOT depend on the quantisation method used and
remains identical, regardless of whether the quantisation is done e.g. with 32, 16, 13 or
8 bits.

1. In floating point (either single or double precision), the representation of this value
is exact. In this text, and also in the tools, this data type is called float.

2. In 32 bit 2’s complement representation the data can be represented by multiplying
the normalized value by 23!. For example, the largest possible positive value is rep-
resented by Ox7FFFFFFF. The largest negative value is represented by 0x80000000.
In this text, and also in the tools, this data type is called long.

3. In 16 bit 2’s complement representation the data can be represented by multiplying
the normalized value by 2'°. For example, the largest possible positive value is
represented by 0x7FFF. The largest negative value is represented by 0x8000. In this
text, and also in the tools, this data type is called short.

4. The statements above may be generalized for all wordlengths in fixed point repre-
sentation. The idea is to set the decimal point just after the MSb (sign bit).

2.2.2 Signal power

The power of a signal x(n) with a length of N samples is defined by

N-1

1 2
P:NZx(n)

=0

S

Version: February 25, 2001 7

A signal which does not contain amplitude values exceeding the overload point can have
a maximum signal power of 1.0. This is the power of a DC signal with an amplitude of
1.0 or of any other signal comprising only the values 4+ 1.0 (e.g., a square wave signal).

2.2.3 Signal level

The power level in decibels is defined relative to a reference power level Py = 1.0:
L =10log,,(P/Py) (dBov)

The level of a signal power P = 1.0 is thus 0 dBov (where the characters “ov” arbitrarily
mean digital overload signal level), which is chosen to be the reference level. A signal with
such power level could be either (a) a sequence of maximum positive numbers (+1), (b)
a sequence of maximum negative numbers (-1), or (c) a rectangular function exercising
only the positive or negative maximum numbers (£1). The level of a sinewave with an
amplitude (peak value) of 1.0 is therefore L = —3.01 dBov.

2.2.4 Relation between overload and maximum levels

The measurement of signal levels in the digital part of the network is normally expressed
by telecommunications engineers as y dBm0, i.e., the level relative to 1 mW in 600f2.
However, from the software point of view, it is more convenient to represent levels relative
to the maximum power that can be stored in integer format on a computer, e.g. z dBov.
A conversion between both representations can be expressed as:

y (dBm0) = z (dBov) + C

For the G.711 encoding rule, a sinewave which exercises the maximum level has a power
Tmax of 3.14 dBm0 for A-law, and of 3.17 dBm0 for p-law. On the other hand, the
RMS level of these sinewaves would always be -3.01 dBov. Therefore, C' above becomes
6.15 dB for A-law and 6.18 dB for p-law. For the G.722 wideband coding algorithm, the
overload point of the A/D and D/A converters should be 9 dBm0. Therefore, in that
case, C becomes 12.01 dB.

The following relationships summarize the discussion:

A4(dBm0) = L,,(dBov) + 6.15d B(A-law)

A, (dBm0) = L,,(dBov) + 6.18dB(u-law)

Awp(dBmO) = Lo, (dBov) + 12.01dB(G.722)

8 ITU-T Software Tool Library, release 2000

2.2.5 Saturation

Saturation is the limitation of signal amplitudes to values equal to or smaller than the
overload point:

~1.0, if2(k) < —1.0
y(k) =< z(k), if —1.0 <z(k) < +1.0
+1.0, if 2(k) > +1.0

2.2.6 Data representation

Unless otherwise noted all waveforms within the signal processing are assumed to have
infinite precision and unlimited amplitude. The overload point is therefore the reference
point only. In practice these signals may well be represented in 32 bit floating point
arithmetic or high precision integer arithmetic (24 bit for data and coefficients, 48 to 56
bit for products and accumulation). In most cases, 16 or 32 bit integer arithmetic is not
precise enough.

Signals derived from 16 bit 2’s complement representation (DAT, files, digital I/O inter-
face) should be converted to this (approximately) infinite precision before processing by
modules that require floating point input. Normalization of the floating point values to
the overload point is recommended.

2.2.7 Data justification

Justification of data here is used without distinction to data alignment and data adjust-
ment: where the upper or lower significant bit of an integer sample is located.

Left-justified data are samples whose most significant bit is located at the leftmost position
of the computer storage unit used for it. Remaining low-bit positions must be set to zero.

Right-justified data are samples whose least significant bit is located at the rightmost
position of the computer storage unit used for it. Remaining upper bits depend on the
data representation: if two’s complement, sign extension from sample’s MSb to storage’s
MSb is needed; otherwise, the upper (unused) bits shall be zeroes.

As an example, suppose a 12-bit resolution, two’s complement sample, to be stored for
processing in a short. If left-justified, then a sign bit (the MSb!) is found in bit 15 (the
MSb) of the short that stores it. On the other hand, if right-justified, the LSb will be the
bit 0 of the short, in this case. If it is a negative number, there would be sign extension
for bit 12 to 15. If it is an unsigned number, the upper 4 bits (in the example) are all
zeros. Figure 2.1 illustrates these three cases.

Version: February 25, 2001 9

Bit number | 15 | 14 |13 |12 |11 {109 |8 |7 |6 |54 ({3 |2|1]0
Bittype | s | v | Vv |V |V]|V IV|V|V|V|V]|V|X|X]|X

(a) Left-justified data

Bit number | 15|14 {13 1211|109 |8 | 7|6 |54 |3[2|1]0
Bittype | s | s |s |s |V |V | V|V|V|V|V|V|V|V]|V|V

(b) Right-justified, sign-extended data

Bit number | 15 | 14 |13 |12 |11 |10 9|8 |7 |6 |54 |3 |2|1]0
Bittype | 0] 0|0 |0 |V |V |IV|V|V|V|V|V|V|V]|V

(c) Right-justified, unsigned data

Figure 2.1: Illustration of a left- and right-justified data with 12-bit resolution.
Bit types s, v, and z represent respectively sign bit(s), valid bits and unused bits.

2.2.8 Equivalent results

Several software tools, such as the G.711 algorithm, are defined in terms of precise fixed
point operations. Therefore, when comparing the output of one of these algorithms on
different platforms, or for compilation using different C compilers, one should expect
identical sample values for reference processed materials.

Other algorithms, however, may include highly intensive processing, or complex mathe-
matical functions. Examples of these are rate change filters and floating-point arithmetic
speech coders, such as the 16 kbit/s LD-CELP of ITU-T Rec. G.728. In such cases, it
is expected that the processing of the same reference material on different platforms will
generate almost identical results. The generated files will probably be identical for most
of the samples, and for some samples they will differ by a small amount, e.g. 41, or more
rarely by +2 or more. For the purposes of the STL, such an implementation is said to
produce equivalent results on different platforms.

2.2.9 Little- and big-endian data ordering

Present computer systems agree only on the data access for byte-oriented data structures.
Although computer systems exist whose bytes do not have 8-bits, the majority of the
systems implement bytes as 8-bit data structures. In general, the computer architectures
do not differ in the way they access the bit-order within a byte. In other words, for the
vast majority of the computer systems existing today, the least significant bit occupies
the lower memory position (i.e., bit 0), and the most significant bit occupies the higher
memory position in the byte (i.e., bit 7). In terms of C operations, if b is a byte structure,
then b&0x1 returns the LSb, and (b>>7)&0x1 returns the MSb.

Although most computer architectures agree on the definition of a byte and how its bits

10 ITU-T Software Tool Library, release 2000

Table 2.1: Example of big- and little-endian systems

Big-endian Little-endian
Computer Microprocessor Computer Microprocessor
Sun-3 Motorola 68000 family IBM-PC/compatibles(® Intel 80x86/Pentium
Sun-4 Sun SPARC family DEC-Stations MIPS RISC
Silicon Graphics MIPS RISC DEC Alpha DEC Alpha AXP
IBM 370 IBM VAX/VMS Microcomputers VAX CPU
HP 9000-700 HPPA RISC
Legend: CISC: Complex Instruction Set Computer
RISC: Reduced Instruction Set Computer
Note: (a) Including Windows 9x/NT /2000 and Linux and Solaris on Intel CPUs.

are accessed, they vastly differ on how multi-byte structures are accessed. Trivial examples
of multi-byte structures are 16-bit short words or 32-bit long words. There are currently
two access means currently implemented by different CPUs in the market, which differ
on the significance of the bytes that are first read from memory positions.

On the so-called big-endian systems, the first byte read from a multi-byte structure is
always the most significant byte. For example, if the two bytes 0x12 (low address) and
0x34 (high address) are stored in two consecutive memory addresses, then the number
read and stored in the CPU accumulator would be 0x3412, or 13330 in decimal. The
big-endian data organization is, for this reason, also known as high-byte first.

For the so-called little-endian systems, the first byte read from a multi-byte structure is
always the least significant byte. For this reason, the little-endian data organization is
also known as low-byte first. Using the same example as before, for the two consecutive
bytes in memory 0x12 and 0x34, the value loaded on a little-endian CPU will be 0x1234,
or 4660 in decimal.

The concept is extended to other multi-byte data structures, such as 32-bit or 64-bit inte-
gers. For example, the consecutive bytes 0x12, 0x34, 0x56, and 0x78 would be loaded as
the 32-bit integer 0x78563412 on the accumulator of a big-endian CPU and as 0x12345678
on the accumulator of a little-endian CPU.

Table 2.1 indicates the data organization for several computer platforms. It should be
noted that the data organization is a function of the CPU family rather than of the
operating system used. For example, Solaris on Sparc platforms uses big-endian data
organization, while Solaris on Intel 80x86/Pentium platforms uses little-endian data or-
ganization. Similarly, most Linux systems are little-endian (because they run on Intel
80x86/Pentium CPUs), but several other implementations are actually big-endian (e.g.
PowerPC CPU used in Macintosh machines).

The segment of C code in figure 2.2 can be used to determine whether a given computer
system has big- or little-endian data organization.

The approach above determines whether a platform is big- or little-endian, but it does
not answer the question of what is the byte orientation in a given file. Although there is
no closed-form method for such a determination, there is an empirical method that can
be carefully used for speech signals (usually represented using 16-bit linear PCM words)

Version: February 25, 2001 11

#include <stdio.h>
#include <string.h>

int is_little_endian()

{
/* Hex version of the string ABCD */
unsigned long tmp = 0x41424344;
/* Compare the hex version of the four characters with the ASCII version */
/* On big-endian (or high-byte-first) systems, 0x41 (’A’ in ASCII) */
/* is stored in the first memory position, and the equivalent string */
/* is "ABCD". On a little-endian (or low-byte-first) system, O0x41 is */
/* stored in the last position, and the equivalent string will be */
/* "DCBA". Function strncmp will return O if both strings are equal */
/* upto the first four characters. */
return(strncmp("ABCD", (char *)&tmp, 4));
}
void main()
{
printf("System is ’s-endian\n", is_little_endian()? "little" : "big");
}

Figure 2.2: Sample code for determination of byte organization.

based on two speech properties: speech signals follow a gamma distribution (hence most
of the samples have small amplitude), and levels in voiced segments are usually in the —15
dBov through —40 dBov range. For files that have a byte orientation mismatching that of
the computer platform, the mostly small samples of the speech signal will be measured as
having large amplitude. Hence, if a high-level power is found when measuring the power
of a voiced segment (typically around —4 dBov), one can assume that the file needs to be
byte-swapped. It is important however to measure the level for voiced segments, since for
silent intervals the increase in gain is not so dramatic and will not allow for a conclusion
on the byte-orientation of the file.

When the change of format is necessary for short and long data, the operations in figure
2.3 should be used. The conversion between big- and little-endian data representation for
16-bit data is simple and is known as byte swapping. The byte swapping operation can
be implemented in several fashions. For example,

short swap_one_short(short in)

{
return (((in>>8)&0xFF) | (in<<8));

¥

It should be noted that the simple byte-swapping above does not work properly for con-
version of other multi-byte structures. For the purposes of the STL, however, 16-bit
structures is the most import case. For several of the STL modules, the provided test files

12 ITU-T Software Tool Library, release 2000

0 78 15 16 23 24 31 0 78 15
Byte 1 Byte 2 Byte 3 Byte 4 Byte 1 Byte 2
Byte 1 Byte 2 Byte 3 Byte 4 Byte 1 Byte 2
24 31 16 23 8 15 0 7 8 15 0 7
(a) Conversion between little— and big—endian for 32-bit data (b) Conversion between little— and big—endian for 16-bit data

Figure 2.3: Conversion between big- and little-endian

in general need to be byte swapped in one or another computer platform. The documen-
tation and the “manifesto” accompaining each software tool module describe which files,
if any, should be byte-swapped on certain platforms. As default, binary files organized in
16-bit words are provided in big endian format in the STL distribution.

2.3 Guidelines for software tool development

The software tools provided by the ITU-T User’s Group on Software Tools are to be used
by laboratories with different computers and A/D-D/A equipment. To make the software
accessible to everybody, it should be highly portable across operating systems and allow
for easy implementation in existing hardware environments.

To achieve this, some simple guidelines were followed in the development of the tools.
The following are the UGST guidelines used to generate the official and beta releases of
the ITU-T Software Tool Library.

i. All software should be written in ANSI C.

ii. Features of the language whose representation may create side-effects should not be
used (e.g. union).

iii. All variables must be declared and the types used in the declarations must be the
least platform dependent. For example, the keyword int must be avoided. Instead
short should be used for 16-bit integers and 1long should be used for 32-bit integers.

iv. The software should not contain any input or output that may be system dependent
(e.g. open, read and write file operations). Instead, data must be passed to the
modules as parameters of function calls. This will allow each laboratory to integrate
the modules with their own application software without changing the modules.
Interfaces to various file formats and user interaction can optionally be provided as
example main programs' that will not be a part of the library module and should
contain the least possible amount of code.

! Also called “demonstration programs” in this manual.

Version: February 25, 2001 13

v. Well defined digital signal formats should be used and documented for each module
to allow the various modules to work together.

vi. The interface to the file system should be made in a standard way, but only within
the example programs.

vii. The source code should be properly documented, with a standard header.

viii. Modularity is encouraged in the software design. All modules are self-contained, i.e.
global definitions should be avoided.

ix. Each module should have an attached specification document explaining the func-
tion and use of the module, the level of detail depending on its complexity.

x. The software modules shall be distributed to interested laboratories for comments
and testing before they are approved and included in the ITU-T Software Tools
Library, to minimize the ocurrence of bugs and to assure conformance with related
ITU-T Recommendations (when applicable). Two test procedures have been de-
vised: compliance and portability.

The compliance procedure (or compliance test) is to certify that a given tool module fully
complies with specifications, which should be carried out by at least one organization
other than the proponent organization (or by a group of organizations, each one checking
a different subset of the specifications, such that all together cover all the specifications).
In order to minimize the probability of systematic errors, these procedures should be
defined by the verifying organization(s) without input from the tool provider(s).

The portability verification procedure (or portability test) is to certify that a given val-
idated tool works on platforms other than the one(s) where they were generated and
validated. In simple cases these verification procedures could be just test vectors (e.g.
speech or noise files). It was also pointed out that problems may arise in Unix plat-
forms, due to the existence of several flavors of Unix available today (this means that a
verification procedure could be valid in one Unix machine, but not in other).

Portability verification procedures should be provided by the proponents and shall be run
on at least two relevant operating systems (DOS, UNIX). In the past, procedures for the
VMS operating system used to be required, however this operating system has become
less common. For DOS, the “pure” 16-bit mode has become less common, and 16-bit
emulation window under a 32-bit version of MS Windows is now prevalent. These facts
affect the choice of compiler.

The following is a list of compilers used to test the portability of tools in the STL, although
not all tools were necessarily tested with all compilers.

HP/c89 This is the ¢89 compiler that can be purchased from HP for use in HP-UX
systems. For the STL, tests with this compiler were performed with HP-UX
9.05.

HP/gcc This is the HP-UX port of the gcc compiler. The specific version may differ
from tool to tool. Versions used included gcc 2.7.2.2 for HP-UX 9.05 and
gee-2.95.2 for HP-UX 10.20.

14

MSDOS/qgce

MSDOS/tce
MSDOS /bee

Solaris/gcce

Sun0S/cc

SunOS/acc

Win32/gcc

Win32/cl

ITU-T Software Tool Library, release 2000

This is the MSDOS-6.22 port of the gcc compiler version 2.6.3-DJGPP V1.
This is a 32-bit compilation of the code, however using a 16-bit interface.
Executables are not likely to run under Windows MS-DOS emulation win-
dow. Needs a run-time 32-bit extender called go32.exe.

This is the Borland Turbo C++ Version 1.00 tcc compiler.
This is Borland C++ bcc compiler. Versions used included 3.0 and 4.5.

This is the gcc compiler version 2.95 running under Solaris 7, usually in a
Sparc platform.

This is the basic cc C compiler bundled in the SunOS distribution. For the
STL, SunOS version 4.1.3 was used.

This is the licensed acc C compiler sold by Sun Microsystems. For the STL,
SunOS version 4.1 was used.

This is the gcc compiler version 2.95 running under Windows NT 4 SP 4
and with the CYGWIN Unix emulation interface. These executables need
either the CYGWIN environment or the run-time library cygwinl.dll to run,
and they are expected to work properly in a DOS emulation window un-
der Windows 95/98 as well. This version will not run under native MS-DOS.

This is the command-line c1 version 12.00.8168 C compiler of the MS Visual
C V.6 SP3 running under the WinNT 4 SP4 (the executables will also run
in Windows 95/98/SE/Me/2000). This version will not run under native
MS-DOS.

2.4 Software module I/0 signal representation

The idea behind the choice of the convention in this section is that all software modules
within the I'TU-T tool library should be independent building blocks which can easily
be combined by connecting the output of one module to the input of the next module.
With this characteristic, various systems may be very easily constructed. The individ-
ual software modules must have well-defined interfaces to allow such simple connections,
especially at the I/O level. This convention is based on the following:

1. All modules work ‘from RAM to RAM’. This means that the working modules are
independent from physical I/O functions which are normally machine dependent.
This approach also allows easy cascading of modules within one ‘main’ program.

2. All signals at the I/O interfaces of modules are represented in one of the following

ways:

Version: February 25, 2001 15

(a) in single or double precision (32 or 64 bit) floating point representation. The
normalized signal is used directly (overload point = reference point = 1.0)

(b) in 32 bit 2’s complement representation. The normalized signal must be mul-
tiplied by 23! (i.e. the decimal point is just after the MSh, same as for 16 bit
representation). If less than 32 bits are required, then the signal is left adjusted
within the 32 bit longword and the LSbs are optionally set to 0.

(c) in 16 bit 2’s complement representation, as described in section 2.2.1. If less
than 16 bits are required, then the signal is left adjusted (left-justified) within
the 16 bit words and the LSbs are optionally set to 0. If the host machine
does not provide a format with 16 bit width, then the next longer wordlength
should be used with the 16 bits right adjusted.

3. Data exchange with a module shall be done directly within the calling statement
(not by global variables).

4. Data exchange with a module shall be done sample-by-sample (FIR-filtering, MNRU,
etc.) or frame-by-frame (block oriented speech codec, etc.), whichever is more con-
venient. Larger blocks may be formed (e.g. 128 samples at a time) for better
efficiency, however the block size should be rather small (less than 512). The block
and its length shall be variables.

5. All modules shall be constructed in a way that infinitely long signals may be pro-
cessed with a reasonable amount of internal storage. As an example, the ‘main’
program could read a block of input data (e.g., next frame of time signal samples)
from the disk, call a module or sequence of modules, write the output signal (e.g.,
next frame of coded parameters) back onto disk. This process is repeated for all the
input data blocks of interest.

6. All modules shall have

(a) an initialization part (if necessary) and
(b) a working part
The initialization part may be necessary to reset internal state variables, define the

mode of operation (e.g. MNRU-mode), and so on. It is called only once at the
beginning or whenever a reset to an initial state is needed.

NOTE: All state variables (if any) must be initialized at execution time, not
at compile or load time.

The working part performs the processing itself. It leaves all state variables in a
well-defined manner for the immediate use within the next call. One possible way
to do this is to introduce a flag-variable within the call statement (e.g., named
‘Initialize’) which is set by the ‘main’ program to '1’ for initialization and is set
to ’0’ during normal operation. In this way, only one function for one module is
necessary. Alternatively, a specialized initialization routine may be written, to be
called before the main processing routine of the module. Only one of the approaches
will be followed in the future. However, both are present in the current version of
the STL.

16 ITU-T Software Tool Library, release 2000

7. The RAM allocation shall in principle be split into ’static’ and ’temporary’ parts.
‘Static’ means that the contents must be saved from call to call, preferrably by
means of state variables rather than truly static variables?. ‘Temporary’ means
that the contents are not saved between sucessive calls of the module.

8. All modules are separated in clearly and independently defined functions, but ac-
companied by an example ‘main’ program which may also include file I/O.

2.5 Tool specifications

For each tool, there are ‘Requirements and Objectives’ (R&Os) associated. Each of the
R&Os has both a general and a specific part.

The general part includes the following?:

1. Portability among platforms and Operating Systems (DOS, UNIX, and
VMS):
e compilation [GL-i];
e usage of language features that may cause side-effects [GL-ii];
e usage of language features that may be ambiguous among platforms
[GLAii];
e usage of system dependent calls (to access resources such as files, etc.
within the modules) [GL-iv];
2. Efficiency:

e use of CPU (i.e., execution speed);

e use of I/O (intensity of access to files, etc.);
e use of memory (physical/virtual);

e code’s coverage (verbosity versus laconism);

3. Documentation:

e Self-documentation (e.g., comments, variables and structure resem-
bling ITU-T Recommendations, etc.)[GL-viil;

e Separate documentation (clarity, objectivity, etc.)[GL-ix];
4. Modularity [GL-viii]

5. Fixed point versus floating point implementations;

Following are descriptions of each of the General R&Os. Full description of the R&Os can
be found in [2, Annex 4].

General performance specification refers to the document that specifies the tool in ques-
tion, e.g. an ITU-T recommendation or ANSI or ETSI standard.

2 As a rule, state variables should not be defined as truly static ones because this may cause side-effects.
3GLx refers to the Guideline number z in section 2.3, e.g., GLiii is the Guideline iii.

Version: February 25, 2001 17

Portability addresses several points related to the tool’s capacity of working on several
platforms: Compilation and linkage refers to the necessity of changes in the source code
to make a tool compile without any modification in a given environment. It was identified
that the operating systems of most interest are DOS and Unix (both BSD and System V).
Side-effectable features are those that, if used in a program, when changing one parameter,
may cause other(s) to be changed implicitly. Ambiguous features are those that, due to
the flexibility left in the C language specification, are implemented in different ways for
different platforms. For example, int in C is 32-bit wide in VAX-C and Unix workstations,
but is 16-bit wide for most compilers available on MS-DOS (Turbo-C/MS-C). System-
dependent calls are calls that are restricted to or are implementation of features of a
particular platform, to make better use of that particular computer architecture.

FEfficiency is related to how the computer’s resources are used in terms of CPU, I/O and
memory allocation, that may be a burden and prevent the usage in some systems, either
by lack of resources or length of time needed for execution. Efficiency also includes code’s
coverage, expressing how frequently code is accessed.

Documentation refers to how to describe the tool. Self-documentation is the documenta-
tion present in the program itself to assure that the code clearly describes the algorithm
implemented, to provide compilation and linkage instructions, as well as to report known
bugs, etc. A separate document will be mandatory when no written description of the
algorithm is available, or when the written documents that specify the tool are too general.

Modularity degree is the degree of isolation that a particular tool has. From UGST
Guidelines, all tools must be modular, i.e., self-contained blocks; nonetheless, tools may
make use of system resources other than memory and CPU.

Arithmetic is the number representation specification, whether fixed (2’s complement, 1’s
complement, etc.) or floating point. Here, “fixed point” shall always be understood as
2’s complement representation, except where otherwise noted.

18

ITU-T Software Tool Library, release 2000

Chapter 3

RATE-CHANGE: Up- and
down-sampling module

In certain applications involving digitized speech, such as subjective evaluation of speech
processed by digital algorithms, it may be preferrable to use sampling higher than the
typical rate used for the algorithms under test. This is desirable because simpler analog
filters with less phase distortion can be built. Another advantage is that upper frequency
components of the signal are not lost. It also allows for the convenient shaping of the
input signal, such as IRS, Agys, and psophometric weightings. Consequently there is a
need to adapt the sampling rate of the digitized signal to that of the processing algorithm.
For telephony applications, the typical sampling rate is 8000 Hz with a signal bandwidth
in general of 300-3400 Hz, and for wideband speech applications, a bandwidth of 50-7000
Hz is desired with sampling rate of 16000 Hz. Therefore, sampling rates above 8000 Hz
and 16000 Hz are desirable, respectively. In several recent experiments [3] the sampling
rate was 16 kHz. In another (see [4]), 48 kHz was utilized. Hence the need for a software
tool to carry out filtering and sampling rate change. Next, the rate change and spectral
weighting routines implemented in the ITU-T STL are presented.

3.1 Description of the Algorithm

Signal processing theory describes the basic arrangement for decimation of signals; first
the signal is low-pass filtered to limit its bandwidth in order to avoid aliasing when the
rate is lowered and, second, to decimate the samples, i.e., to drop out samples from the
input signal, such that the desired output rate is obtained. For example, if a rate reduction
from 48 kHz to 8 kHz is desired, a decimation factor of 6:1 is necessary. This is equivalent
to say that, after limiting the bandwidth of the digitized speech to 4 kHz, 5 out 6 samples
are skipped, or alternatively, only 1 out of 6 samples will be kept (or saved) from the
signal.

The up-sampling of signals requires that each of the input samples be followed by a number
of zero samples, such that the desired output rate is achieved; after this, an interpolation
operation of these zero samples is performed to obtain a continuous-envelope signal. For
example, up-sampling data from 8 kHz to 16 kHz requires interleaving each sample of the

19

20 ITU-T Software Tool Library, release 2000

input signal with a zero sample followed by interpolation of the signal. This interpolation
can be carried out by means of a polynomial, which is equivalent to a filtering operation.

The type of filtering required is determined by the application intended for the signals.
For the tools needed in this version of the STL, three different groups of characteristics
were defined:
e High-quality: Change in rate without changing the frequency response of
the input signal. This is accomplished with a flat, linear phase, low-pass or
bandpass FIR filter.

e Spectral weighting: Spectral weighting without rate change is necessary for
some applications. For narrow-band speech, available are the IRS weighting
specified in ITU-T Rec. P.48, the so-called “modified” IRS (annex D of ITU-T
Rec. P.830), the far-to-near-field conversion Ag,; weighting, and the psopho-
metric noise weighting of ITU-T Rec. O.41. For wideband signals, the mask
for wideband handsets, as defined in I'TU-T Rec. P.341, is also available.

¢ PCM quality: Change in rate accompained with modification of the fre-
quency response of the input signal according to the mask specified in ITU-T
Recommendation G.712. This is accomplished with a non-linear phase low-
pass IIR filter.

3.1.1 High-quality

The response of the filters in this type of rate change must minimize phase and amplitude
distortion. For example, for decimation from 48 kHz to 16 kHz, the filter must be flat
up to about 8 kHz (except for the transition, or cut-off, region), with a linear phase. In
other cases, it may be desirable to remove the DC component and hum noise (50-60 Hz
AC line noise) from the signal without additional phase distortion to the upper region of
the spectrum.

x(K) —=| z z z o= 7

DD D

Figure 3.1: FIR filter block diagram.

One way to do this is to use a linear phase finite impulse response (FIR) digital filter, as
in figure 3.1. The input and output characteristic is defined by:

y(k) = z hi) - ok — i)

Version: February 25, 2001 21

K
x(k) © O y(k)

51

C11 b1y
1

C21 z

1 bo
1

CL Z by
1

CoL z

Figure 3.2: Parallel-form IIR filter block diagram.

Linear phase is guaranteed if the filter is symmetric, i.e.:

h(k) = h(N —1—k), for k= 0.N — 1

3.1.2 Telephony-band weighting
IRS weighting

The IRS weighting corresponds to a bandpass filtering characteristic whose mask can be
found in ITU-T Recommendation P.48 [5]. The send and receive spectral shapes of the
IRS weighting were obtained in a round-robin series of measurements made on a number
of contemporary analog telephones in the early 1970’s [6]. From these measurements, the
average send and receive frequency-response characteristics were derived. However, for
the loudness balance purposes for which the IRS was designed, it was also necessary to
include a 300-3400 Hz bandpass filter, known as the SRAEN filter. The values of send and
receive sensitivity currently given in ITU-T Rec. P.48 (columns 2 and 3 in Table 3.1) are
therefore composed of the average send and receive responses for a number of telephones,
as well as the response of the SRAEN (Systéeme de Référence pour la détermination de
I’Affablissement équivalent pour la netteté; Reference System for determining Articulation
Ratings) filter (see column 4 of Table 3.1).

Because the P.48 TRS weighting used to be considered to model of an average narrow-band
telephone handset used in the PSTN, the IRS weighting has been used to simulate speech
signals obtained from a regular handset. Examples of standardization efforts using the
P.48 weighting characteristic are the I[ITU-T Recommendations G.711, G.721, and G.728.
This weighting, as defined in P.48, is sometimes called “full-IRS” weighting.

While the weighting characteristic in P.48 was considered to model connections over ana-
log transmission facilities in the past (although it is not clear why the SRAEN filter
should be included in both the send and receive paths), it is no longer representative of
connections over modern digital facilities. In particular, the low frequency roll-off gives

22

ITU-T Software Tool Library, release 2000

Table 3.1: Send and receive amplitude frequency characteristics for the IRS
response as in ITU-T Rec.P.48, the SRAEN filter, and the modified IRS (P.48
IRS with SRAEN filter insertion loss removed).

Frequency P.48 TIRS SRAEN Modified IRS
Send Receive Filter Send Receive

(Hz) (dbPa/V) | (dbPa/V) | (dB) | (dbPa/V) | (dbPa/V)
100 -45.8 -27.2 14.1 -31.7 -13.4
125 -36.1 -18.8 11.4 -24.7 -7.4
160 -25.6 -10.8 8.4 -17.2 -2.4
200 -19.2 -2.7 5.9 -13.3 3.2
250 -14.3 2.7 4.0 -10.3 6.7
300 -11.3 6.4 2.8 -8.5 9.2
315 -10.8 7.2 2.5 -8.3 9.7
400 -8.4 9.9 1.4 -7.0 11.3
500 -6.9 11.3 0.6 -6.3 11.9
600 -6.3 11.8 0.3 -6.0 12.1
630 -6.1 11.9 0.2 -5.9 12.1
800 -4.9 12.3 0.0 -4.9 12.3
1000 -3.7 12.6 0.0 -3.7 12.6
1250 -2.3 12.5 0.0 -2.3 12.5
1600 -0.6 13.0 0.1 -0.5 13.1
2000 0.3 13.1 -0.2 0.1 12.9
2500 1.8 13.1 -0.5 1.3 12.6
3000 1.5 12.5 0.5 2.0 13.0
3150 1.8 12.6 0.3 2.1 12.9
3500 -7.3 3.9 7.0 -0.3 10.9
4000 -37.2 -31.6 33.7 -3.5 2.1
5000 -52.2 -54.9 43.2 -9.0 -11.7
6300 -73.6 -67.5 -23%*
8000 -90.0 -90.0 -40*

(*): Values estimated from the modified IRS implemented in the STL.

Version: February 25, 2001 23

rise to unnecessary quality degradation. For the purpose of low bit-rate coder evaluation,
especially where the coder is located in the telephone handset, a better characteristic can
be obtained by modifying the P.48 full-IRS response to remove the SRAEN filter as shown
in columns 5 and 6 of Table 3.1. These values are specified in Annex D of ITU-T Rec-
ommendation P.830 [7] and define the so-called “modified” IRS weighting. The modified
IRS has been used in the development of ITU-T Recommendations G.723.1 and G.729,
and will be used for the on-going standardization activities for an ITU-T 4 kbit/s speech
codec.

The most important part of either the full or the modified IRS weighting is the transmis-
sion (or send) characteristic. The receive characteristic is less important because listening
is in general done using handsets conforming to P.48 (which eliminates the need for filter-
ing by the software, since it is done by the telephone terminal). In addition, the receive
characteristic is relatively flat. Some studies also show that the use of headphones instead
of handsets does not result in significantly different results while yielding lesser listener
fatigue [8, 9]. Nevertheless, for cases where the receive-side MIRS filter is to be applied,
a FIR implementation of this filter is available for 8000 Hz and 16000 Hz sampling rates.

An unspecified point in both P.48 and modified IRS is the phase response of the filter.
There have been discussions within UGST on whether this should be implemented with a
linear characteristic. The conclusion was that, since the phase response is unspecified, it
should be kept as generic as possible, what is better accomplished by keeping the phase
linear!. If a certain non-linear phase characteristic is desired by the user, this can be
implemented by cascading an all-pass filter with the desired phase response with one of
the available FIR IRS implementations. Therefore, the IRS filters are implemented as
FIR filters, as depicted in figure 3.1.

ITU-T Recommendation P.48 presents the nominal values for the amplitude response in
column 2 of its Table 1 (here reproduced in column 2 of Table 3.1) and then the upper and
lower tolerances listed in its Table 2. For the STL approach, it was decided to design IRS
filters whose characteristic would deviate no more than 0.5 dB from the average values in
P.48 (see in Figure 3.12 the agreement of the nominal values, represed by dots, and the
measured frequency response for the original P.48 IRS characteristic, represented by the
continuous curve in the figure).

Other weightings

A filter that simulates the input response characteristic of certain mobile terminals was
incorporated in the STL for data sampled at 16 kHz. Figures 3.10 and 3.11 display the
respective frequency and impulse responses for the filter.

'In spite of that, a non-linear phase IIR IRS filter is provided in the IIR module as an example of a
cascade-form IIR filter implementation.

24 ITU-T Software Tool Library, release 2000

3.1.3 Wideband weighting
P.341 weighting

While the IRS filter is applicable to telephony bandwidth (or narrowband) speech, for
wideband speech the specification for the send and receive sides is given in I'TU-T Recom-
mendation P.341 [10]. The mask specified in P.341 is rather wide, and an implementation
of the send-side mask agreed on by the experts has been incorporated in the STL.

Other weightings

In the process to select a wideband codec at 32 and 24 kbit/s, a 5 kHz bandpass filter
was developed and incorporated in the STL. Figures 3.22 and 3.23 display the respective
frequency and impulse responses for the filter.

3.1.4 Noise weighting

Two weighting filters are available in this version of the STL, the psophometric and the
Agy weighting filters.

The psophometric weighting curve defined by ITU-T Recommendation O.41 is used for
measuring the noise level in telephone circuits, accounting for the subjective perception of
noise. The psophometric noise measure (given in dBmp) is related to the North-American
C-message weighting curve (given in dBrnC), using to the following:

dBmp = dBrnC — 90.0dB

The other type of signal weighting filter is the Ag,,, used for converting acoustic signals
recorded in the far field using an omnidirectional microphone to the near-field equivalent
of that signal if it were in the background of a telephone user. Owing to the directionality
of the human mouth, head and torso, the high frequencies will mainly be radiated in the
frontal direction, while the diffuse field will represent a spatial integration of the radiation
in all directions [11]. Hence, the Agy filter is deployed for weighting acoustic noises
(babble, vehicular, etc.) before electrical summation with clean speech files, in order to
simulate speech corrupted by background noise. It is useful in subjective listening tests
where precise control of the actual SNR is necessary.

Both these filters have been implemented as FIR filters. The psophometric filter has been
designed for speech sampled at 8 kHz, and the Ag,, filter for speech sampled at 16 kHz.
It should be noted that these filters, like the IRS filters, are also frequency-specific and,
unlike the low-pass high-quality FIR filters described before, cannot be used for arbitrary
rate ratio convertion.

3.1.5 PCM Quality

There are applications requiring the simulation of the response of filters found in the A/D
and D/A interfaces of current transmission systems, which are in general PCM systems

Version: February 25, 2001 25

satisfying [TU-T Recommendation G.711. The filters associated with G.711 are specified
in Recommendation G.712 [12]. The main characteristic of these filters is the low out-of-
band rejection of 25 dB.

In this context it is also necessary to simulate the convertion back to and forth the
analog domain, e.g. to simulate multiple transcodings which are called asynchronous
trancodings®. One way to simulate asynchronous transcodings is by means of a non-linear
phase filter (non-constant group delay), which is most efficiently implemented using IIR
filters.

Infinite impulse response (IIR) filters used in this tool are of the parallel form (see figure
3.2), described by the equation:

H?(2) :K+2L:

=1

bos + bllZ_l
1+ CUZ*l + 021272

and of the cascade form (see figure 3.3), described by the equation:

N -1 —2
b b b
He(z) = H or + 012" + 0912

I—1 1+ CUZ*l + 021272

3.2 Implementation

The rate change algorithm is organized in two modules, FIR and IIR, with prototypes
respectively in firflt.h and iirflt.h. It evolved from a version initially developed
by PKI, as part of the ETSI Half-rate GSM codec Host Laboratory exercise [13]. The
rate-change functionality was incorporated in the STL92 in two main files, hqflt.c and

pcmflt.c. To make these routines more flexible, the following modifications were in-
cluded:

FIR: the FIR module was divided into a library source file (fir-1ib.c) containing the
basic filtering and initialization functions, as well as into source files for each kind
of filter: fir-flat.c for high-quality low-pass and bandpass filters, fir-irs.c for
the classical and modified IRS filters, and so on;

ITR: the IIR module was divided into a library file (iir-1ib.c) containing basic filter-
ing and initialization functions, as well as into source files for each kind of filter:
iir-g712.c for G.712 filtering using the parallel-form filters, iir-flat.c for flat
bandpass 1:3 and 3:1 asynchronization filtering using a cascade-form filter, and so
on.

Files fir-x*.c of the FIR module contain all the routines implementing FIR filters, i.e.,
the high-quality filters and IRS, Agy; and psophometric weighing filters. Files iir-*.c

2As the name indicates, there is no synchronisation between sampling instants of the two digital
systems, i.e., re-sampling in the succeeding A/D is not synchronous to the clock in the preceeding D/A
converter.

26

ITU-T Software Tool Library, release 2000

1 01
x (Ko o- -,
7t :
€11 by |
|
z |
o1 by |
77777777777777777777777777 |
' b
! 1 Oi
'—o o- - -
X, (K) 71 y,(k
I
Cyj by, :
I
z! |
S b, :
I
FTTTTTT TS s '
! 1 ON
'_o o yN(k)
;1
Cin by
;1
Con by

Figure 3.3: Cascade-form IIR filter block diagram.

Version: February 25, 2001 27

of the ITR module implement the IIR filters, i.e., the parallel-form PCM filter and the
cascade-form 3:1 asynchronization filter.

Some of these filters have been implemented using 24-bit coefficients, thus allowing real-
time, bit-exact hardware implementation of these routines. It may noted that, for these
filters in the STL, the calculations are performed in floating point by converting the
coefficients from the range —22%..22%-1 to —1.. + 1, which is not needed in real time
hardware with fixed point DSPs.

Frequency respopnse and impulse response plots are provided for the STL filters in the
forthcoming sections. It should be noted, however, that the impulse responses shown have
been computed from the 16-bit quantized impulse responses of the filters, as generated by
the demonstration programs, while the frequency responses were calculated as described
in section 3.3. It should be noted that the apparent asymmetry in some impulse responses
happens because an integer number of samples are generated, and linear interpolation is
used to draw the figure. If the impulse responses were derived directly from the filter
coefficients, the plot would be symmetric.

NOTE: When the same filter type is used by several independent speech materials (e.g.
several speech files) within the same execution of an application program, the user must
remember that the filters have memory. Hence, wrong results can be obtained if a given
number of initial samples are not discarded. See section 3.4 for an example, where the
first 512 samples are skipped when calculating the power level of the output tone.

3.2.1 FIR module

The frequency responses of the implemented high-quality low-pass filters are shown in
figures 3.4 and 3.5 (for rate-change factors 2 and 3, respectively), while the telephone
bandwidth bandpass filter is given in figure 3.6 (only a rate-change factor of 2 is available).
The impulse responses of these filters are given in figures 3.7, 3.8, and 3.9, respectively
for the up-sampling filters (factors 2 and 3), for the down-sampling filters (factors 2 and
3), and for the bandpass filter.

The transmit-side IRS filter has been implemented for the “regular” and modified flavors.
The regular transmit-side P.48 IRS filter amplitude responses are shown in figure 3.12
(the available sampling rates are 8 and 16 kHz). The transmit-side modified IRS filter
is available for sampling at 16 kHz and 48 kHz, and their frequency responses are shown
in figure 3.14. The impulse response of these transmit-side IRS filters are in figures 3.13
and 3.15 for the regular and modified IRS filters, respectively. The receive-side modified
IRS filter has also been implemented and the frequency responses for 8 kHz and 16 kHz
sampling rate are found in 3.16. The impulse responses of the receive-side modified IRS
filters are shown in figure 3.17.

The frequency response of the STL psophometric filter is given in figure 3.18, and that of
the Ag,y filter in figure 3.19.

For wideband signals, two weighting filters are available. The transmit-side ITU-T P.341
filter amplitude response is shown in figure 3.20, and its impulse impulse is shown in figure

28 ITU-T Software Tool Library, release 2000

3.21. Alternatively to the P.341 filter, the frequency and impulse responses of the 5 kHz
bandpass filter are shounf in figures 3.22 and 3.23, respectively.

The high-quality filters were implemented for rate-change factors of 2 and 3. The IRS
filters have been designed for specific sampling rates (e.g. 8 and 16 kHz). It should be
noted that, while the high-quality filters are independent of the rate, the IRS filters are
not, because the IRS mask is specified in terms of Hz, rather than normalized frequencies.
This means that to carry out a high-quality up-sampling from 8 to 16 kHz, and from 16
to 32 kHz, the same routines are called, while for IRS there is no rate-change routine from
16 to 32 kHz.

Since the digital filters have memory, state variables are needed. In this version of the
STL, a type SCD_FIR is defined, containing the past sample memory, as well as filter
coefficients and other control variables. Its fields, whose values shall never be changed by
the user, are as follows:

lenhO Number of FIR coefficients

dwn_up Down-sampling factor

kO Start index in next segment (needed in segment-wise filtering)
hO Pointer to array with FIR coefficients

T .o Pointer to delay line

hswitch Switch to FIR-kernel: up- or down- sampling

The relevant routines for each module are described in the next sections.?

3It should be noted that in the source code files there are local (privately-defined) functions which are
not intended to be directly accessed by the user and therefore are not described here.

Version: February 25, 2001

Figure 3.4:
16000 Hz.

IH(f)] [dB]

IH(f)] [dB]

T T T T T T T

0 .

0 b
A0
60 b
e

| | | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

(a) High-quality filter for up-sampling.

! ! ! ! ! ! !

0 ‘ ‘ L T T e L .
00 b -
A0 b _
'60 _ """"""" o A c CoTT """""" =
sof AANAT

| | | | | ‘ |

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

(b) High-quality filter for down-sampling.

29

High-quality filter responses for a factor of 2 and sampling rates of 8000 and

30

Figure 3.5:
24000 Hz.

IH(f)] [dB]

IH(f)] [dB]

-80

-80

High-quality filter responses for a factor of 3 and sampling rates of 8000 and

ITU-T Software Tool Library, release 2000

500 1000 1500 2000 2500 3000 3500 4000

Frequency [Hz]
(a) High-quality filter for up-sampling.

i

2000 4000 6000 8000 10000 12000

Frequency [Hz]
(b) High-quality filter for down-sampling.

Version: February 25, 2001 31

T T T T T T T
0 I________________________f ________________
|
|
20 K- T T T
|
0 |
S, |
A0
k) |
L I
|
|
U e S
- |
|
B0 |1
L | | | | ! !
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]
(a) High-quality bandpass for up-sampling (factor 1:2).
T T T T T T T
0 !
-20

IH(f)] [dB]
S

o
S

-80

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

(b) High-quality bandpass for 2:1 down-sampling or for 1:1 filtering.

Figure 3.6: High-quality bandpass filter responses. Mask shown is that of the G.712 filter,
for reference.

32 ITU-T Software Tool Library, release 2000

T 1[]‘\» T T 1T T T T ‘ T T 1T 1T 1T 7 ‘ T T 1T T T ‘ T T T T T #
= 0.8 Impulse Response, computed with: =
= N ‘ 7
= - : 1
0l § HQDEMO d0bin wp-2h0 | 0 1.2 0 0 0 -
0.4 —
0.2 — —
0.0 — —
7O°2f\ R I I ‘ I A I ‘ N I I B ‘ A A \T
-64.0 -32.0 0.0 52.0 64 .0
k ——=
ﬂ\ 1[]7\ FT T T ‘ FT T T T T ‘ P T T T T ‘ FT T T T T ‘ FT T T T T ‘ T T 1T TT]
= 0.8 Impulse Response, [| computed with: =
o = | _
= - : 1
0l § HQDEMO dObin up-3.h0 [|0 1.3 0 0 0 -
0.4 B
0.2 — —
0.0 — —
70“247\ T ‘ N) ‘ N o ‘ T ‘ Y T Y ‘ I I \i
-64.0 -32.0 0.0 32.0 64.0
k ——=

Figure 3.7: Impulse response for high-quality up-sampling filters (top, factor of 2; bottom,
factor of 3).

Version: February 25, 2001 33

T AR R R R RN RN R R R AR R RN
| oal | .
= - Impulse Response, computed with: .
o B : B
T 03 | .
- § HQDEMO d0.bin down-2.h0[| 0 2.1 0 0 0]
0.2~ | =
0.1~ .
0.0F .
,Unli\\\\H‘H\HH‘H\HH‘\HHH‘HHH\‘HH\H‘HH\H‘HHH?
-24.0 -lo.0 -8.0 0.0 8.0 16.0 24 .0
k ——=
ﬁ O T[T T[T T T[T T T T T[T T T T [T T T[T TTTTT1
0.3 ‘ —
> - _
= ‘ 3
= i Impulse Response, computed with: i
0.2 — —]
- § HQDEMO d0.bin downf&h0§ 031000 i
0.1— —
0.0 —]
7\\\\H‘H\HH‘H\HH‘\HHH‘HHH\‘HH\H‘HH\H‘HHH*

-24.0 -lo.0 -8.0 0.0 8.0 16.0 24.0
k ——=

Figure 3.8: Impulse response for high-quality down-sampling filters (top, factor of 2;
bottom, factor of 3).

34 ITU-T Software Tool Library, release 2000

T
ol
ool
ol | NEE

10000 [oo

Amplitude []

5000 - b

-5000

oo L
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170
Samples []

(a) High-quality bandpass for up-sampling (factor 1:2).
MO 77T T 1T T T T T T T T T T T 1

12000

10000

8000

6000

4000

Amplitude []

2000

0

-2000

PO T T T T N A N N M
0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Samples []

(b) High-quality bandpass for down-sampling (factor 2:1).

Figure 3.9: Impulse response for high-quality bandpass filter (factors 2:1 and 1:1). Top is
up-sampling by a factor of 1:2, and bottom is down-sampling by a factor of 2:1.

Version: February 25, 2001

m
540

0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

Frequency [Hz]

35

Figure 3.10: STL mobile station input (MSIN) frequency response for data sampled at
16 kHz (factor 1:1).

Amplitude []

35000

30000

25000

20000

15000

10000

5000

-5000

Figure 3.11: STL MSIN send-side filter impulse response.

T T T T T T T T
]]]]]]]]
0 20 40 60 80 100 120 140 160 180
Samples []

36 ITU-T Software Tool Library, release 2000

3.2.1.1 *_init for the FIR module

Syntax:

#include "firflt.h"

SCD_FIR *delta_sm_16khz_init (void);
SCD_FIR *hq down_ 2 to_1_init (void);
SCD_FIR *hq up_1_to_2_init (void);

SCD_FIR *hq down 3_to_1_init (void);
SCD_FIR *hq.up-1_to_3_init (void);

SCD_FIR *irs_8khz_init (void);

SCD_FIR *irs_16khz_init (void);

SCD_FIR *linear phase pb_2 to_1_init (void);
SCD_FIR *linear phase pb_1 to_2_init (void);
SCD_FIR *linear phase pb_1 to_1_init (void);
SCD_FIR *msin_16khz_init();

SCD_FIR *mod_irs_16khz_init (void);

SCD_FIR *mod_irs_48khz_init (void);

SCD_FIR *rx mod_irs_8khz_init(void);

SCD_FIR *rx_ mod_irs_16khz_init(void);
SCD_FIR *psophometric_8khz_ init (void);
SCD_FIR *p341_16k_init (void);

SCD_FIR *bpbk_16k_init (void);

Prototypes: firflt.h
Description:

delta_sm_16khz init is the initialization routine for the Ag,; weighting filter for data
sampled at 16 kHz using a linear phase FIR filter structure. Input and output signals will
be at 16 kHz. Code is in file fir-dsm. c and its frequency response is given in figure 3.19.

hq-up-1_to_2_init is the initialization routine for high quality FIR up-sampling filtering
by a factor of 2. The -3 dB point for this filter is located at approximately 3660 Hz. Code
is in file fir-flat.c and its frequency and impulse response are given in figures 3.4(a)
and 3.7 (top), respectively.

hg.down 2 to_1_init is the initialization routine for high quality FIR down-sampling
filtering by a factor of 2. The -3 dB point for this filter is located at approximately 3660
Hz. Code is in file fir-flat.c and its frequency and impulse response are given in figures
3.4(b) and 3.8 (top), respectively.

hq_up-1_to_3_init is the initialization routine for high quality FIR up-sampling filter by
factor of 3. The -3 dB point for this filter is located at approximately 3650 Hz. Code is
in file fir-flat.c and its frequency and impulse response are given in figures 3.5(a) and
3.7 (bottom), respectively.

hq-down_3_to_1_init is the initialization routine for high quality FIR down-sampling
filtering by a factor of 3. The -3 dB point for this filter is located at approximately 3650

Version: February 25, 2001 37

STL Freqg.Resp. IRS filter - sampl.freq=8kHz

j A N A L j j
o | |
S, I !
i i | | | | | | - | | i
L] e
b RS F S 0 O TR % S S L
: i i i i i I I' i | :
100 1000

Frequency [Hz]

(a) Transmission-side IRS for input samples at 8 kHz.

STL Freq.Resp. IRS filter - sampl.freq=16kHz

IH(! [dB]
5

-60

-80

100 1000
Frequency [Hz]

(b) Transmission-side IRS for input samples at 16 kHz.

Figure 3.12: Transmission-side IRS filter responses. The diamonds represent the nominal
values of the “full” TIRS characteristic and the interrupted line represent the mask of the
“full” TRS, as shown in figure 2 of ITU-T Rec. P.48.

38 ITU-T Software Tool Library, release 2000

T Un47\\\H‘H\HH‘HHH\‘\HHH\HHH‘HH\H\HHHHHL
E 0.3 Impulse Response, computed with:]
() — ! |
<= - ; _
g 2§ HQDEMO d0.bin irs-16.h0 176‘ 0000 -
0.1 —
0.0 — —
0.1 -
,Un2:\\\H‘\HHH‘\HHH‘\HHH‘HH\H‘H\HH‘\HHH‘\HH:

-96.0 -64.0 -32.0 0.0 32.0 64.0 96.0
k ——=
ﬂ\ U8L\ FTd ‘ FT T T T T ‘ FT T T T T FT T T 1T ‘ P T T T T ‘ rrT T
g 0 BLImpulse Response, computed | with:]
= - B
= ~ % HQDEMO dO0.bin irs-8.n0 860000]
0.4 ‘ —
0.2 —
0.0~ .
0.2 ; —
o Y ‘ T Y ‘ T Y) ‘ Y ‘ Y ‘ T T s

-64.0 -32.0 0.0 32.0 64.0

k ——=

Figure 3.13: Impulse response of transmission-side IRS filters at 16 and 8 kHz.

Version: February 25, 2001 39

Frequency [Hz]

(a) Transmission-side modified IRS for input samples at 16 kHz.
10

m-20

60 Lliiil P il R i
100 1000 10000
Frequency [Hz]

(b) Transmission-side modified IRS for input samples at 48 kHz.

Figure 3.14: Transmission-side modified IRS filter responses. The interrupted line repre-
sents the mask of the “full” IRS.

40

20000

ITU-T Software Tool Library, release 2000

17500
15000
12500
10000
7500
5000

Amplitude []

2500
0

-2500
-5000

-7500
170

250

Samples []

(a) Transmission-side modified IRS for input samples at 16 kHz.

8000

7000
6000
5000
4000
3000
2000

Amplitude []

1000
0
-1000
-2000

-3000
205

215 225 235 245 255

265 275 285 295 305 315

Samples []

(b) Transmission-side modified IRS for input samples at 48 kHz.

Figure 3.15: Impulse response of transmission-side modified IRS filters at 16 kHz (top)

and 48 kHz (bottom).

Version: February 25, 2001 41

R R R ERLITREEE SRR :
%? Y o o R _Upper-mask ——-___ R

B e -Lower-mask --
b R SRR L LR STL filter---

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

(a) Receive-side modified IRS for input samples at 8 kHz.

T e e e e e e R EEEEEE

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Frequency [Hz]

(b) Receive-side modified IRS for input samples at 16 kHz.

o

Figure 3.16: Receive-side modified IRS filter responses. The diamonds represent the
nominal values of the modified IRS characteristic and the interrupted line represent the
mask of the “full” IRS.

42 ITU-T Software Tool Library, release 2000
Sl I s S B S B H B B B B
25000 |- -
20000 |t -

|
% 15000 = r e b —]
=
=
e TO0000 - r —
<
5000 e S S —
0
OO S S A S R R
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Samples []
(a) Receive-side modified IRS for input samples at 8 kHz.
£ N L S B S B B B B
13000 | 7777777 L L 7777777 P 77777777 L L 77777]
11000 S T -
9000 | -
= TFOOO - r e L —]
(]
©
2 5000
o
£ 3000
1000
-1000
-3000 ; ; ‘ ‘ ‘ ‘ ; ; ‘ ‘ ‘ : ‘
-5000 I NN Y AN NN NN (R N NN R SN R
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Samples []

(b) Receive-side modified IRS for input samples at 16 kHz.

Figure 3.17: Impulse response of receive-side modified IRS filters at 8 kHz (top) and 16
kHz (bottom).

Version: February 25, 2001 43

STL Freq.Resp. Psophometric filter - sampl.freq=8kHz

H(| [dB]
S o

o
S

co
S
|
i

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

Figure 3.18: Frequency response for the psophometric filter. The points show the average
points and the allowed range as per [TU-T Rec. O.41.

m

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

Figure 3.19: Frequency response for the Ag,, filter.

44 ITU-T Software Tool Library, release 2000

P.341 send filter
(linear phase FIR, 592 taps)

Amplitude Response [dB]

0:uuu\uiuu\uuiuuuu\muuuu\uuuuwuu\uumuuuui Ll
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

Figure 3.20: STL P.341 send-side filter frequency response for data sampled at 16 kHz
(factor 1:1).

25000 T T T T T T T T T
000 [
15000 f= b | T
© 10000 f- T ————_—,_———,—,S-
= !
= :
S :
E 5000 [L —————
< |
0
25000 | D ———..- A
0000 | | i | | | | | |
196 216 236 256 276 296 316 336 356 376 396
Samples []

Figure 3.21: STL P.341 send-side

filter impulse response.

Version: February 25, 2001

10.0 g
50 ©
0.0 —
5.0
-10.0
-15.0
200 |
250
-30.0 |
-35.0
-40.0 |
450 |
-50.0 |-
-55.0 |
-60.0 |
-65.0 |-
700 [
75.0 [-
-80.0 Eveveil ‘

Amplitude Response [dB]

(16 kHz sampling frequency, 592 taps)

J

1T
codtbhe bbb

0 1000 2000 3000 4000 5000 6000 70

00 8000

Frequency [Hz]

45

Figure 3.22: STL 5 kHz band limiting filter frequency response for data sampled at 16

kHz (factor 1:1).

FIR 50-5000 Hz Flat Bandpass Filter Impulse Response

20000 ! ! ! ! ! ! ! ! !
00 Rt H | e e

D= 10000 [

©

2

=

g 5000 S
0

OO [TR TN T T I T N N
196 216 236 256 276 296 316 336 356 376

Samples []

Figure 3.23: STL 5 kHz band limiting filter impulse response.

396

46 ITU-T Software Tool Library, release 2000

Hz. Code is in file fir-flat.c and its frequency and impulse response are given in figures
3.5(b) and 3.8 (bottom), respectively.

linear _phase bp_1_to_2_init is the initialization routine for bandpass, FIR up-sampling
filtering by a factor of 2. The -3 dB points for this filter are located at approximately
98 and 3460 Hz. Code is in file fir-flat.c and its frequency and impulse response are
given in figures 3.6(b) and 3.9(b), respectively.

linear phase bp_2_to_1_init is the initialization routine for bandpass, FIR down-sampling
filtering by a factor of 2. The -3 dB points for this filter are located at approximately
98 and 3460 Hz. Code is in file fir-flat.c and its frequency and impulse response are
given in figures 3.6(a) and 3.9(a), respectively.

linear_phase_bp_1_to_1_init is the initialization routine for FIR 1:1 bandpass filtering.
The -3 dB points for this filter are located at approximately 98 and 3460 Hz. Code is in
file fir-flat.c and its frequency and impulse response are given in figures 3.6(a) and
3.9(a), respectively.

msin_16khz_init is the initialization routine for the high-pass, FIR 1:1 filter that sim-
ulates a mobile station input characteristic. The -3 dB point for this filter is located at
approximately 195 Hz. Code is in file fir-flat.c and its frequency and impulse response
are given in figures 3.10 and 3.11, respectively.

irs 8khz init is the initialization routine for the transmit-side IRS weighting filter for
data sampled at 8 kHz using a linear phase FIR filter structure. Input and output signals
will be at 8 kHz. Code is in file fir-irs.c and its frequency and impulse response are
given in figures 3.12 and 3.13, respectively.

irs_16khz_init is the initialization routine for the transmit-side IRS weighting filter for
data sampled at 16 kHz using a linear phase FIR filter structure. Input and output signals
will be at 16 kHz. Code is in file fir-irs.c and its frequency and impulse response are
given in figures 3.12 and 3.13, respectively.

mod_irs_16khz_init is the initialization routine for the transmit-side modified IRS weight-
ing filter for data sampled at 16 kHz using a linear phase FIR filter structure. Input and
output signals will be at 16 kHz since no rate change is performed by this function. Code
is in file fir-irs.c and its frequency and impulse response are given in figures 3.14 and
3.15, respectively.

mod_irs_48khz_init is the initialization routine for the transmit-side modified IRS weight-
ing filter for data sampled at 48 kHz using a linear phase FIR filter structure. Input and
output signals will be at 48 kHz since no rate change is performed by this function. Code
is in file fir-irs.c and its frequency and impulse response are given in figures 3.14 and
3.15, respectively.

rx_mod_irs_8khz init is the initialization routine for the receive-side modified IRS weight-
ing filter for data sampled at 8 kHz using a linear phase FIR filter structure. The -3 dB
points for this filter are located at approximately 285 Hz and 3610 Hz. Input and output
signals will be at 8 kHz since no rate change is performed by this function. Code is in
file fir-irs.c and its frequency and impulse response are given in figures 3.16 and 3.17,
respectively.

rx_mod_irs_16khz_init is the initialization routine for the receive-side modified IRS

Version: February 25, 2001 47

weighting filter for data sampled at 16 kHz using a linear phase FIR filter structure.
The -3 dB points for this filter are located at approximately 285 Hz and 3610 Hz. Input
and output signals will be at 16 kHz since no rate change is performed by this function.
Code is in file fir-irs.c and its frequency and impulse response are given in figures 3.16
and 3.17, respectively.

psophometric_8khz_init is the initialization routine for the O.41 psophometric weighting
filter for data sampled at 8 kHz using a linear phase FIR filter structure. Input and output
signals will be at 8 kHz since no rate change is performed by this function. Code is in file
fir-pso.c and its frequency response is given in figure 3.18.

p341_16khz init is the initialization routine for the P.341 send-side weighting filter for
data sampled at 16 kHz. Input and output signals will be at 16 kHz since no rate change
is performed by this function. Its frequency response is shown in figure 3.20 and its
impulse response is shown in figure 3.21. The -3 dB points for this filter are located at
approximately 50 and 7000 Hz. Code is in file fir-wb.c.

bpbk_16khz_init is the initialization routine for a 5-kHz-band limiting of wideband signals
sampled at 16 kHz. Input and output signals will be at 16 kHz since no rate change
is performed by this function. Its frequency response is shown in figure 3.22 and its
impulse response is shown in figure 3.23. The -3 dB points for this filter are located at
approximately 50 and 4990 Hz. Code is in file fir-wb.c.

Variables:
None.
Return value:

These functions return a pointer to a state variable structure of type SCD_FIR.

3.2.1.2 hq_kernel

Syntax:

#include "firflt.h"
long hq-kernel(long Iseg, float

Prototype: firflt.h

*1r_ptr, SCD_FIR *fir_ptr, float *y_ptr);

Source code: fir-lib.c
Description:

This is the main entry routine for generic FIR filtering. It works as a switch to specific
up- and down-sampling FIR-kernel functions. The adequate lower-lever filtering routine
private to the filtering module (which is not visible by the user) is defined by the initial-
ization routines. Currently, this function does not work properly for sample-by-sample
downsampling operation, i.e. when [seg = 1. This limitation should be corrected in
afuture version.

Please note that prior to the first call to hq_kernel, one of the initialization routines
hg_*_init must be called to allocate memory for state variables and the set the desired

48 ITU-T Software Tool Library, release 2000

filter coefficients.

After returning from this function, the state variables are saved to allow segment-wise
filtering through successive calls of hq_kernel. This is useful when large files have to be
processed.

Variables:

lseg Number of input samples. Should be larger than 1 for proper
downsampling operation.

Tptr ... Array with input samples.

fircptr Pointer to FIR-struct.

y_ptr Pointer to output samples.

Return value:

The number of filtered samples as a long.

3.2.1.3 hq_reset

Syntax:

#include "firflt.h"
void hq.reset (SCD_FIR *fir_ptr);

Prototype: firflt.h
Source code: fir-lib.c
Description:

Clear state variables in SCD_FIR struct; deallocation of filter structure memory is not done.
Please note that fir_ptr should point to a valid SCD_FIR structure, which was allocated by
an earlier call to one of the FIR initilization routines hq_*_init.

Variables:
fircptr L Pointer to a valid structcure SCD_FIR.

Return value:

None.

3.2.1.4 hq_free

Syntax:

#include "firflt.h"
void hq_free (SCD_FIR *fir_ptr);

Prototype: firflt.h
Source code: fir-lib.c
Description:

Deallocate memory, which was allocated by an earlier call to one of the FIR initilization
routines hq_*_init. Note that the pointer to the structure SCD_FIR must not be a null

Version: February 25, 2001 49

pointer.

Variables:

fircptr Pointer to a structure of type SCD_FIR.
Return value:

None.

3.2.2 IIR Module

The IIR module contains filters whose main use is for asynchronous filtering. For tele-
phony bandwidth asynchronous filtering, PCM filters are available in both cascade and
parallel IIR filter forms. For wideband speech (50-7000 Hz), 3:1 and 1:3 rate-change
factor filters are available. A transmit-side IRS filter for speech sampled at 8 kHz is also
available in this module as an example of implementation of an IIR cascade-form filter.

The PCM filters have been designed for sampling rates of 8 and 16 kHz. It should be
noted that the G.712 mask is specified in terms of Hz, rather than normalized frequencies.
Therefore this applies only to rate conversions of factor 2, i.e., 8 kHz to 16 kHz and 16
kHz to 8 kHz. The frequency responses of the implemented PCM filters are shown in
figure 3.28.

Since the digital filters need memory, state variables are needed. In the STL, a type
SCD_IIR has been defined for parallel-form IIR filters, containing the past memory samples
as well as filter coefficients and other control variables. Its fields are as follows:

nblocks Number of coefficient sets

idown Up-/down-sampling factor

kO ..., Start index in next segment

gain Gain factor

direct_cof Direct path coefficient

bS] ... Pointer to numerator coefficients

cf2f ..., Pointer to denominator coefficients

T/2] ...l Pointer to state variables

hswitch Switch to ITR-kernel: Up or down-sampling

For the cascade-form IIR filters, the state variable structure defined is CASCADE_IIR which
is slightly different from the one for the parallel form structure:

nblocks Number of stages in cascade

idown Up-/down-sampling factor

kO Start index in next segment

gasin Gain Factor

af2] ...l Pointer to numerator coefficients

b/2] oo Pointer to denominator coefficients

TG oot Pointer to state variables

hswitch Switch to ITR-kernel: Up or down-sampling

It should be noted that the values of the fields must not be altered, and for most purposes
they are not needed by the user. The relevant routines for each module are described in

50 ITU-T Software Tool Library, release 2000

the next sections.

HM|[dB]
& 5 8

co
S

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]

Figure 3.24: Frequency response of the cascade implementation of the G.712 standard
PCM filter for data sampled at 8 kHz.

3.2.2.1 iir_*_init

Syntax:

#include "iirflt.h"

CASCADE_IIR *iir_G712_8khz_init (void);
CASCADE_IIR *iir_irs_8khz_init (void);
CASCADE_TIR #iir_casc_lp_3_to_1_init(void);
CASCADE_IIR *iir_casc_lp_1_to_3_init(void);

Prototypes: iirflt.h
Description:

iir_G712_8khz_init initializes an 8 kHz cascade IIR filter structure for a standard PCM
(G.712) filtering. Input and output signals will be at 8 kHz since no rate change is
performed by this function. The -3 dB points for this filter are located at approximately
230 and 3530 Hz. Its source code is found in file cascg712.c and its frequency response
is given in figure 3.24.

iir_irs_8khz_init initializes an 8 kHz cascade IIR filter structure for a transmit-side
P.48 TRS non-linear phase filtering. Input and output signals will be at 8 kHz since no
rate change is performed by this function. Its source code is found in file iir-irs.c and

Version: February 25, 2001 51

N
o

IH(f)] [dB]
S

o
S

o
S

100 1000
Frequency [Hz]

Figure 3.25: Frequency response of an IIR cascade implementation of the P.48 “full”
transmit-side IRS weighting filter for data sampled at 8 kHz.

its frequency response is given in figure 3.25.

iir_casc_1p_3_to_1_init is the initialization routine for IIR low-pass filtering with a
down-sampling factor of 3:1. Although this filter is relatively independent of the sampling
rate,? it was originally designed for asynchronization filtering of 16 kHz sampled speech.
The -3 dB point for this filter is located at approximately 7055 Hz. Its source code is found
in file iir-flat.c and its frequency and impulse response are given in figures 3.26(a) and
3.27(a), respectively.

iir casc_lp_1_to_3_init is the initialization routine for IIR low-pass filtering with a up-
sampling factor of 1:3. Although this filter is relatively independent of the sampling rate,
it was originally designed for asynchronization filtering of 16 kHz sampled speech. The -3
dB point for this filter is located at approximately 7055 Hz. Its source code is found in
file iir-flat.c and its frequency and impulse response are given in figures 3.26(b) and
3.27(b), respectively.

“4Since this is a low-pass filter, change of sampling rate implies in change of the lower and upper cutoff
frequencies.

52 ITU-T Software Tool Library, release 2000

IIR 1:3 Asynchronous filter

(for a sampling frequency of 16kHz)

10.0 g

0.0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0

Amplitude Response [dB]

700 ©
-80.0 ©

-90.0 ©

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]
(a) Flat low-pass up-sampling by a factor of 3:1.

lIR 3:1 Asynchronous filter
(for a sampling frequency of 48kHz)

10.0 z

0.0
-10.0
-20.0
-30.0
-40.0
-50.0
-60.0

Amplitude Response [dB]

700 ©
-80.0 ©

w0 L

: SN L bl
10000 15000 20000
Frequency [Hz]

(b) Flat low-pass down-sampling by a factor of 1:3.

-100.0 °

Figure 3.26: Flat low-pass IIR filter frequency response with factors 1:3 and 3:1 for
sampling rates of 16000 and 48000 Hz.

Version: February 25, 2001

25000 T T T T T T T T T T T
20000 H e . o e o e
800D
Cwofl
() | | | | | | | | | | |
©
2 5000
o
e
< 0
-5000 {1
S T
15000 | | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500 550 600

Samples []

(a) 1:3 up-sampling factor
800 —T—TT T T T T T T T T T T T T T T T

0000 [

OO0 [
— i i i i i i i i i i i i i i i i i i i
° i i i i i i i i i i i i i i i i i i i
B 2000 [
Q | i i i i i i i i i i i i i i i i i i
£ |
<

oF
2000 Lo

P T T T T S O A A
0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200
Samples []

(b) 3:1 down-sampling factor

Figure 3.27: Impulse response for 1:3 and 3:1 cascade-form low-pass IIR filter.

54

ITU-T Software Tool Library, release 2000

| | | | | | |
0 |
I
I
|
5 0 T e S {I ,,,,,,,,,,, -
| .
o N
=) L
=40 b e -
T i
I
T S b :
1
| | | | | | x
L
! ! ! ! ! !)
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]
(a) G.712 for input samples at 8 kHz, up-sampling factor 1:2

IH(f)] [dB]
S

o
S

-80

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

(b) G.712 for input samples at 16 kHz, down-sampling factor 2:1 or 1:1

Figure 3.28: Standard PCM (G.712) quality filter response.

Version: February 25, 2001

ﬁ 0.75 e L B O B B B B
050 — Impulse response, computed with PCMDEMO o
= (up-/down-sampling factor 1:1) 3
o 025 $ PCMDEMO d0.bin hO1 1 1.1 0 0 —
0.00 ;* *;
~0.25 =
~0.50 - =
70 75 :\ ‘ A Y I O I ‘ A I O O I ‘ A S O B ‘ R Y I Y ‘ \:

" 0.0 32.0 64.0 96.0 128.0
k ——
ﬁ 0.75 L L B B Y B
050 Impulse response, computed with PCMDEMO -
<~ T E (up-sampling factor 1:2) E
;5 0.25 &= § PCMDEMO d0bin h01_2 1.2 0 0 —
0.00 =
0.25 =
~0.50 - =
70 75 ; ‘ A I B ‘ N I Y ‘ N N ‘ I A S ‘ \:

' 0.0 32.0 64.0 96.0 128.0
k ——=
ﬁ 0.75 RN EE
0.50 — Impulse response, computed with PCMDEMO o
~ | E (down-sampling factor 2:1) -
;5 0.25 = $ PCMDEMO d0.bin h0.2_1 2.1 0 0 =
0.00 ;“ *;
0.5 & =
~0.50 £ =
70 75 ; ‘ A I B ‘ N I Y ‘ N N ‘ I A S ‘ \:

' 0.0 32.0 64.0 96.0 128.0
k ——

Figure 3.29: Impulse response for G.712 filters (Top: factor 1:1; Middle: factor 1:2;

Bottom: factor 2:1).

56 ITU-T Software Tool Library, release 2000

3.2.2.2 cascade_iir kernel

Syntax:

#include "iirflt.h"
long cascade_iir kernel (long Iseg, float *z_ptr, CASCADE_IIR *jir_ptr,
float *y_ptr);

Prototype: iirflt.h
Source code: iir-lib.c
Description:

General function for implementing filtering using a cascade-form IIR filter previously
initialized by one of the iir_x_init () routines.

Variables:

lseg o Number of input samples.

Tptr .. Array with input samples.

wuroptr Pointer to a cascade-form ITR-struct CASCADE_IIR.
y-ptr Pointer to output samples.

Return value:

The number of output samples is returned as a long.

3.2.2.3 cascade iir reset

Syntax:

#include "iirflt.h"
void cascade_iir_reset (CASCADE_IIR *ir_ptr);

Prototype: iirflt.h
Source code: iir-lib.c
Description:

Clear state variables in CASCADE_IIR structure, which have been initialized by a previous
call to one of the initialisation functions. Memory previously allocated is not released.

Variables:

ur_ptr Pointer to struct CASCADE_IIR, previously initialized by a call
to one of the initialization routines.

Return value:

None.

Version: February 25, 2001 57

3.2.2.4 cascade_iir free

Syntax:

#include "iirflt.h"
void cascade_iir_free (SCD_IIR *ir_ptr);

Prototype: iirflt.h
Source code: iir-lib.c
Description:

Deallocate memory, which was allocated by an earlier call to one of the cascade-form IIR
filter initilization routines described before. iir_prt must not be a NULL pointer.

Variables:

wur_ptr Pointer to struct CASCADE_IIR, previously initialized by a call
to one of the initialization routines.

Return value:

None.

3.2.2.5 stdpcm *_init

Syntax:

#include "iirflt.h"

SCD_IIR *stdpcm_16khz_init (void);
SCD_IIR *stdpcm_1 to_2_init (void);
SCD_IIR *stdpcm 2 to_1_init (void);

Prototypes: iirflt.h
Description:

stdpcm_16khz_init initializes a 16 kHz IIR filter structure for standard PCM (G712)
filtering. Input and output signals will be at 16 kHz since no rate change is performed by
this function. The -3 dB points for this filter are located at approximately 174 and 3630
Hz. Source code is found in file iir-g712.c and its frequency and impulse response are
given in figures 3.28(b) and 3.29 (top), respectively.

stdpem_1_to_2_init initializes standard PCM filter coefficients for filtering by the generic
filtering routine stdpcm kernel, for input signals at 8 kHz, generating the output at 16
kHz. The -3 dB points for this filter are located at approximately 174 and 3630 Hz.
Source code is found in file iir-g712.c and its frequency and impulse response are given
in figures 3.28(a) and 3.29 (middle), respectively.

stdpcm_2_to_1_init initializes standard PCM filter coefficients for filtering by the generic
filtering routine stdpcm_kernel for input signals at 16 kHz, generating the output at 8
kHz. The -3 dB points for this filter are located at approximately 174 and 3630 Hz.
Source code is found in file iir-g712.c and its frequency and impulse response are given

58 ITU-T Software Tool Library, release 2000

in figures 3.28(b) and 3.29 (bottom), respectively.
Variables:

None.

Return value:

This function returns a pointer to a state variable structure of type SCD_IIR.

3.2.2.6 stdpcm kernel

Syntax:

#include "iirflt.h"
long stdpcm_kernel (long [lseg, float
float *y_pir);

*r_ptr, SCD_IIR *ur_ptr,

Prototype: iirflt.h
Source code: iir-lib.c
Description:

General function to perform filtering using a parallel-form IIR filter previously initialized
by one of the appropriate parallel-form *_init () routines available.

Variables:

lseg o Number of input samples.
Tptr .. Array with input samples.
ur-ptr Pointer to a parallel-form ITR-struct SCD_IIR.
y_ptr Pointer to output samples.

Return value:

This function returns the number of output samples as a long.

3.2.2.7 stdpcm_reset

Syntax:

#include "iirflt.h"
void stdpcm_reset (SCD_IIR *iir_ptr);

Prototype: iirflt.h
Source code: iir-lib.c
Description:

Clear state variables in SCD_IIR structure, which have been initialized by a previous call
to one of the init functions. Memory previously allocated is not released.

Variables:

wur_ptr Pointer to struct SCD_IIR, previously initialized by a call to
one of the initialization routines.

Version: February 25, 2001 59

Return value:

None.

3.2.2.8 stdpcm free

Syntax:

#include "iirflt.h"
void stdpcm_free (SCD_IIR *ir_ptr);

Prototype: iirflt.h
Source code: iir-lib.c
Description:

Release memory which was allocated by an earlier call to one of the parallel-form IIR
filter initilization routines described before. The parameter iir_prt must not be a null
pointer.

Variables:

wroptr Pointer to struct SCD_IIR, previously initialized by a call to
one of the initialization routines.

Return value:

None.

3.3 Tests and portability

Compliance with the R&Os was verified by checking the frequency response of the filters
and the size of the output files. Frequency response was obtained by feeding the filtering
routines with sinewaves and calculating the ratio in dB, for each frequency of interest.

Portability of this module was checked by running the same speech file on a proven plat-
form and on a test platform. Comparison of both processed files should show either no
differences or yield equivalent results.® Tests were performed in the VAX/VMS environ-
ment with VAX-C and gcc, in MSDOS with Borland Turbo C++ Version 1.00 and gcc
(DJGPP), in SunOS with cc, acc, and gee, and in HPUX with gec.

5Some differences may appear in the output files, but for a few samples and by no more than 1 LSb.
As an example, in the tests for checking VAX and SUN-OS, one of the files differed in 3 samples out of
49152 for a cascade of high-quality up- and down-sampling of 1:6 and 6:1. For small rate change factors,
differences are unlikely.

60 ITU-T Software Tool Library, release 2000

3.4 Examples

3.4.1 Description of the demonstration programs

Three programs are provided as demonstration programs for the RATE module, firdemo.c,
iirdemo.c, and filter.c.

Programs firdemo.c and iirdemo.c were the first demonstration programs for the rate
change module. The former is found in directory fir of the STL and contains a cascade
processing of the FIR filters available upto the STL96. The latter is found in directory iir
of the STL and contains a cascade processing of the IIR filters available upto the STL96.
However, because of the increasing static memory requirement for cascade processing
that came with the introduction of new filters in the STL, these two programs became
prohibitive and their maintenance was discontinued. They are still functional, although
outdated.

Program filter.c is a single demonstration program that incorporates both IIR and
FIR filters in the STL and has been kept up-to-date as new filters are added to the
STL. Compared to the firdemo.c and iirdemo.c programs, filter.c can only perform one
filtering operation per pass, while firdemo.c and iirdemo.c could perform a number of 1:1
operations combined with two up-sampling and two downsampling operations. Hence,
several calls of the filter program are necessary to implement what was accomplished by a
single call of firdemo.c and iirdemo.c, in addition to the cummulative quantization noise
(from the sucessive float-to-short conversions). In applications where multiple filtering is
needed and the user is concerned with the quantization noise accumulation, a custom-
made program could be used e.g. based on a specialization of either firdemo.c, iirdemo.c,
or filter.c.

3.4.2 Example: Calculating frequency responses

The following C code exemplifies the use of some of the filter functions available in the
STL. The C code generates a number of tones which are specified by the user (lower,
upper, and step frequencies). The frequency response is obtained by calculating the
power change for each single frequency before and after filtered by the selected filter.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* UGST MODULES */
#include "ugstdemo.h"
#include "iirflt.h"
#include "firflt.h"

/* Other stuff */
#define TWO_PI (8xatan(1.0))
#define QUIT(m,code) {fprintf(stderr,m); exit((int)code);}

Version: February 25, 2001 61

void main(argc, argv)

int argc;
char *xargv([];
{
SCD_FIR *fir_state;
SCD_IIR *¥iir_state;
float *BufInp, *Buflut;
char F_type[20];
long j, N, N2;
long inp_size, out_size;
double f, £0, fstep, ff, fs, inp_pwr, H_k;
char is_fir;

/* Preamble */
N = 266; N2 = 20; inp_size = N * N2;

/* Read parameters for processing */

GET_PAR_S(1, "_Filter type(irs,hq2,hq3,pcm,pcml): ... ", F_type);
GET_PAR_D(2, "_Start frequency [Hz]: v £f0);
GET_PAR_D(3, "_Stop frequency [Hzl: v, ff);
GET_PAR_D(4, "_Frequency step [Hz]l: v, fstep);
FIND_PAR_D(5, "_Sampling Frequency [Hz]: ", fs, 8000);

/* Check consistency of upper and lower frequencies */
ff = (£f >= fs / 2)7? (fs / 2) : ff;
if (f0 < 2.0 / (double) inp_size * fs && fO != 0.0)

f0 = 2.0 / (double) inp_size *fs;

/* Normalization of frequencies */
f0 /= fs; ff /= fs; fstep /= fs;

/* Set flag to filter type: IIR or FIR */
is_fir = (strncmp(F_type,"pcm",3)==0 || strncmp(F_type,"PCM",3)==0)

7?70 :1;
/* ... CHOOSE CORRECT FILTER INITIALIZATION ... */
/*
* Filter type: irs - IRS weighting 2:1 or 1:2 factor:
* . fs == 8000 -> up-sample: 1:2
* . fs == 16000 -> down-sample: 2:1
*/

if (strncmp(F_type, "irs", 3) == 0 || strncmp(F_type, "IRS", 3) == 0)
{
if (fs == 8000)
fir_state = irs_8khz_init();
else if (fs == 16000)
fir_state = irs_16khz_init();
else
QUIT("IRS Implemented only for 8 and 16 kHz\n", 15);

62 ITU-T Software Tool Library, release 2000

/*
* Filter type: hgq2 - High-quality 2:1 or 1:2 factor:
* . fs == 8000 -> up-sample: 1:2
* . fs == 16000 -> down-sample: 2:1
* hq3 - High-quality 3:1 or 3:1 factor
* . fs == 8000 -> up-sample: 1:3
* . fs == 16000 -> down-sample: 3:1

else if (strncmp(F_type,"hq",2)==0 || strncmp(F_type,"HQ",2)==0)
{
if (fs == 8000) /* It is up-sampling! */
fir_state = F_typel[2] == ’2’
? fir_up_1_to_2_init()
: fir_up_1_to_3_init();
else /* It is down-sampling! */
fir_state = F_typel[2] == ’2’
? fir_down_2_to_1_init()
: fir_down_3_to_1_init();

}
/*

* Filter type: pcm - Standard PCM quality 2:1 or 1:2 factor:
* . fs == 8000 -> up-sample: 1:2

* . fs == 16000 -> down-sample: 2:1

* pcml - Standard PCM quality with 1:1 factor

* . fs == 8000 -> unimplemented

* . fs == 16000 -> OK, 1:1 at 16 kHz
*/

else if (strncmp(F_type,"pcm",3)==0 || strncmp(F_type,"PCM",3)==0)
{
if (strncmp(F_type,"pcmi", 4)==0 || strncmp(F_type,"PCM1",4)==0)
{
if (fs == 16000)
iir_state = stdpcm_16khz_init();
else
QUIT("Unimplemented: PCM w/ factor 1:1 for given fs\n", 10);
}
else
iir_state = (fs == 8000)
? stdpcm_1_to_2_init() /* It is up-sampling! */
: stdpecm_2_to_1_init(); /* It is down-sampling! */

}
/* Calculate Output buffer size */
if (is_fir)
out_size = (fir_state->hswitch==’U’)
? inp_size * fir_state->dwn_up
: inp_size / fir_state->dwn_up;
else

out_size = (iir_state->hswitch==’U’)
? inp_size * iir_state->idown

Version: February 25, 2001

: inp_size / iir_state->idown;

/* Allocate memory for input buffer */

if ((BufInp = (float *) calloc(inp_size, sizeof (float))) == NULL)
QUIT("Can’t allocate memory for data buffer\n", 10);

/* Allocate memory for output buffer */

if ((BufOut = (float *) calloc(out_size, sizeof(float))) == NULL)

QUIT("Can’t allocate memory for data buffer\n", 10);

/* Filtering operation */
for (f = £f0; f <= ff; f += fstep)
{
/* Reset memory */
memset (BufOut, >\0’, out_size * sizeof(float));

/* Adjust top (NORMALIZED!) frequency, if needed */
if (fabs(f - 0.5) < 1e-8/fs) f -= (0.05xfstep);

/* Calculate as a temporary the frequency in radians */
inp_pwr = f *x TWO_PI;

/* Generate sine samples with peak 20000 ... */
for (j = 0; j < inp_size; j++)
BufInp[j] = 20000.0 * sin(inp_pwr * j);

/* Calculate power of input signal */
for (inp_pwr = 0, j = 0; j < inp_size; j++)
inp_pwr += BufInp[j] * BufInp[j];

/* Convert to dB */
inp_pwr = 10.0 * loglO(inp_pwr / (double) inp_size);

/* Filtering the whole buffer ... */
j = (is_fir)
? fir_kernel(inp_size, BuflInp, fir_state, BufOut)
: stdpcm_kernel (inp_size, BufInp, iir_state, BufOut);

/* Compute power of output signal; discard initial 2xN samples */
for (HLk = 0, j = 2 *x N; j < out_size - 2 x N; j++)
H_k += BufOut[j] * BufOutl[j];

/* Convert to dB */
H_k = 10 * loglO(H_k / (double) (out_size - 4 * N)) - inp_pwr;

/* Printout of gain at the current frequency */
printf ("\nH(%4.0f) \t = %7.3f dB\n", f * fs, H_k);

64

ITU-T Software Tool Library, release 2000

Chapter 4

EID: Error Insertion Device

An error insertion device (EID) is used to study the behaviour of digital transmission
systems and equipments under error conditions. This requires a model for the transmission
channel, and an error generation algorithm. In the most general case, burst or random bit
error generators are needed. In other cases, such as when evaluating mobile and wireless
systems, random and bursty frame erasures are of importance.

The EID module implements these four functionalities. The model for random and bursty
bit errors, and for random frame erasure is based on a linear congruential sequence random
number generator, and the bit error insertion and random frame erasure are based on a
two-state channel model.

The burst frame erasure function requires a more elaborated model. For the specific
application of wireless systems, a model based on Markov sequences has been developed.
This is known within ITU as the Bellcore model [14, 15]. It has been used in the ITU-T
8 kbit /s speech coder selection tests, and has been incorporated in the STL.

In this chapter one finds the description of both channel models, and a description of their
implementation in the EID module.

4.1 Description of the Algorithm

4.1.1 Simple Channel Model

The bit error insertion algorithm of the EID is based on a channel model where (binary)
data bitstreams are to be transmitted, and is based on the discrete Gilbert Elliott channel
(GEC) model, described in [16].

This model (see figure 4.1) has two states, Good (G) and Bad or Burst (B). Associated
with these two states, there are four parameters (probabilities): two relating to the prob-
ability of remaining in state GG or B, and two relating to the probability of transition from
the current state to the other state (i.e., the occurence of a binary digit transition, or
error).

The probabilities associated with the channel states are P and (), P being the probability

65

66 ITU-T Software Tool Library, release 2000

of transition from state G' to B, and () the probability of transition from B to G. Hence,
the probability of remaining in the same state is (1 — P) and (1 — @) for states G and B,
respectively. For a given state, there are probabilities that a change in a bit occur, and
this is Py for state G, and Pg for state B.

Therefore, the channel may be either in the good state GG, where the mean bit error proba-
bility Pg is very low (Pg = 0), or in the bad state B, where the mean bit error probability
Pg is rather high (Pp =~ 0.5).

1-R, 1-P,
50’ () ’O! !O’ () !O’
P, P,
P, B,
’1’ ’/|5 ’/|5 ’1’
(1-B) (1-F)

Figure 4.1: Gilbert Elliot Channel Model (GEC)

The mean bit error probability BER generated by this channel model is

P Q
BER = —-P — . P, 4.1
1_7 B + 1_7 G ()
where

v o= 1-(P+Q) (4.2)

is a measure for the correlation of the bit errors, and consequently an indication of the
burst or random characteristic of the channel. In this issue, v &~ 0 implies a nearly ran-
dom error channel, while v &~ 1 implies a totally bursty channel. Please note that BER
is reasonable only in the range 0 < BER < 0.5.

For many applications, bit error sequences with a distinct mean bit error probability
BER and a distinct bit error correlation 7 are of interest. From equations (4.1) and
(4.2) we get for the remaining parameters of the GEC for arbitrarily choosen values of
0< Py < Pp <0.5:

P = (1-v) - (1—7]3;]3__3153z (4.3)
Q = (1-o - PR (1.4)

Ps — Pg

Version: February 25, 2001 67

In the Error Insertion Device (EID) the special values P = 0 and Pg = 0.5 are choosen.
This relates to the fact that in the good state no bit changes are expected, hence P = 0;
now, for the bad state, the channel is supposed to be in a totally uncertain state, then
P = 0.5. With this choice, equations (4.3) and (4.4) reduce to:

P = 2-(1—+)-BER (4.5)

Q = (1—7)-(1—2-BER) (4.6)

As an example, figure 4.2 shows the effect of v on the auto-correlation of a bitstream,
generated by the GEC (with BER = 0.02 in equations (4.5),(4.6)).

analyzed bits: 20.000.000

N =00 y=0.5

10_2 IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|
0.0 10.0 20.0 30.0 40.0 50.0

K ——>
Figure 4.2: Bit Error Correlation for a Bit Error Rate of 2%

It can be seen that for v = 0 the bit errors are statistically independent, because the
autocorrelation sequence ACF(k) has a peak (1.0) in k = 0, and the remaining coeffi-
cients ACF(1),ACF(2),... oscillate around the selected bit error rate of 0.02 (2-10~2). For
v = 0.5, slightly bursty errors can be observed, when the initial terms of the correlation
sequence build a transition region, and the remaining (higher) terms are around 0.02.
Increasing v towards unity, the correlation between the bit errors also increases, leading
to totally bursty errors in the limit.

4.1.2 The Bellcore Model

The following description has been based on [14]. The actual error sequence in a wireless
environment will depend upon the carrier frequency, user speed, detection scheme, type
of diversity employed, mean SNR, hand-off mechanism, etc. Though a model could be

68 ITU-T Software Tool Library, release 2000

created using the above parameters, it would be impossible to apply because of the wide
variance of the model parameters. It was found that a speech coder can be tested using
error bursts generated by a much simpler model because the burst error performance
of a speech coder can be characterized to a great extend by the way it reacts to short
(5-20 ms), medium (30-60 ms) and long (over 80 ms) error bursts. If a coder performs
well in the presence of a representative range of short, medium and long error bursts,
it can be expected that the coder will behave well in an actual wireless communications
environment, even though the actual radio channel generates error bursts with different
statistics.

The Bellcore model, rather than modeling the wireless communications channel, models
the occurrence of these short, medium, and long error bursts that would enable the
characterization of the coder reaction to error bursts and to the error burst patterns

it is expected it will encounter in practice.

1—p0

.7 P

Figure 4.3: N-state Markov Model.

An N-state Markov model, as illustrated in figure 4.3, is used in the STL to generate
frame erasure bursts. This model has to be adequate to test speech coders using short
speech segments (6-8s). In this model, a transition from any state (0..N—1) to state 0
represents a frame received without errors, while a transition from state j—1 to state j
indicates that j previous frames have been received in error. A transition from j back to
0 marks the end of an error burst of length j followed by a good frame.

The Markov model with N states for creating a bursty wireless communications channel
is capable of erasing up to N-1 frames. The model generates both frames with correlated
frame erasures and error-free frames. The value of N will depend on the frame duration
of the speech coder under test and the maximum error burst length the coder expects
to find in practice. The error statistics can be controlled by selecting the N—1 transition
probabilities pg, k=0..N-2. The probabilities will also determine the sequence of good
and erased frames.

Version: February 25, 2001 69

The steady state probabilities can be calculated by solving the state transition matrix
or using numerical methods. If S; denotes the steady state probability that the chain is
in state j and p; is the probability of transitioning from state j to j + 1, the following
relationships can be stablished:

Sjy1 = p;jS; 0<j<N-2
N-1

So= > S;(1—pj) (pv-1=0)
=0

The equations above can be solved since the probabilities should satisfy:
N-1
dYopi=1
=0

A frame erasure length of j can occur only if the chain first enters state j, and then
transitions to state 0. The probability Py, of this occur is

Pre = Si(1 —pj)

The probability of receiving a frame in error can be calculated as

N-1
P, = Z ije (])
7j=1
and the probability of receiving an error-free frame is 1 — P,. It can be seen that the
steady state probability of being in state 0, Sy, also gives the probability of receiving a

frame without error, i.e.,
N—1

So=1= 2 jPr()

J=1

The frame error distribution can be controlled by selecting the transition probabilities.

4.2 Implementation

The EID algorithm is made in C can be found in the module eid.c, with prototypes in
eid.h. This version evolved from previous C implementations developed by PKI', and
was used in the Host Laboratory Sessions of ETSI’s contest for the second generation of
the GSM Digital Mobile Radio Systems, and in the Selection Phase of the ITU-T 8 kbit/s
speech coder.

The random-number generator is based on a linear congruential technique, as described
in [17]. The rule here is:

a, = (69069 * a, 1 + 1) mod 2°2,

'Phillips Communications Industry.

70 ITU-T Software Tool Library, release 2000

which is converted (mapped) to a float number between 0 and 1.

Since the random number generator and the channel need their internal state to be saved,
two state variable data structure types were defined for the EID module. The structure
type called SCD_EID is applicable to the burst and random bit erasure functions, as well
as to the random frame erasure function. The fields of this structure are:

seed Seed for random number generator.
nstates Number of states of the channel model (presently 2).

current_state Index of current channel state.

ber Pointer to array containing thresholds according to the bit
error rate in each state.

usrber User defined bit error rate.

usrgamma User defined correlation factor.

matric Pointer to matrix containing thresholds according to the

probabilities for changing from one state to another one.

For burst frame erasures only, a different state variable structure type called BURST_EID
has been defined, whose fields are:

seedptr Memory for random number generator.

internal Array with probabilities for each state of the Markov
process.

ndex Channel’s current state.

The values of the fields shall not be altered and are not needed by user.

The random number generator always starts from the same point, if the user does not
specify different initial seeds. In order to avoid this, the EID state variables should be
saved at the end of the processing of a speech sequence, e.g. to a file by the user. This
saving is not implemented by the EID module because this envolves I/O to the computer
file systems, and this would violate one of the UGST guidelines. Nevertheless, an example
of this procedure is described in the demonstration programs that accompany this release
of the EID. Therefore, users should keep in mind that, unless they save (e.g. to a file) the
EID state at the end of the processing, identical error patterns will be produced, when
the processing is re-started.

The sample buffers used by the EID module use softbits. Softbits are defined as a multi-
level representation of the binary (“hard”) bits ‘1’ and ‘0’ which are associated to prob-
abilities of being in error. The softbit definition adopted in the ITU-T STL uses 16-bit
words as representation of the hardbits ‘1’ and ‘0’, where the hardbit ‘1’ is represented
by the softbit 0x0081 and the hardbit ‘0’ is represented by the softbit 0x007F. Therefore,
there are 8 significant bits for each softbit; this definition is flexible enough to accomodate
all applications that utilize the softbit concept. When soft-decision is not used, the hard
bit information can be derived directly from bit 7 of the 16-bit softbit word. Also, the
softbit >17 is represented by the softbit 0x0081, instead of 0x0080, in order to have both

Version: February 25, 2001 71

hard bits 1’ and ’0’ equally spaced from 0x0000 (in other words, 0x0000 is exactly
the middle of the two-complement range for 0x81 and 0x7F). Therefore, a softbit 0x0000
represents a total uncertainty about the true bit value.

Error patterns produced and used by the EID module use this softbit definition. Input
and output data (i.e. signals which are affected by bit errors or frame erasures) also use
softbits, but additionally have a so-called synchronization header.

The synchronization header is defined as two consecutive 16-bit words, the first one always
being a synchronization (sync) word in the range 0x6B21 to 0x6B2F, followed by the
bitstream length word, a two-complement number indicating the number of softbits in
the frame. The sync word 0x6B20 is reserved to indicate that a frame erasure happened.
For example, for the RPE-LTP algorithm, which uses 260 bits per frame, the soft bitstream
would have the format indicated in figure 4.4. It can be seen that each RPE-LTP frame
will have 262 16-bit words, being one for the sync word (0x6B21 in the example), one
for the frame length word (whose value here is 260), followed by 260 softbit words (here
corresponding to ‘1’, €0, ..., ‘0?, ‘0?). This combination of the synchronization header
and a softbit “payload” is called the bitstream signal representation and is used in ITU-
T Recommendation G.192 [18] to represent encoded signals between speech encoders,
error-insertion devices, transmission channel models and speech decoders.

Bits
fffff 15
14
N | o
e
3 - | w w | oW
o | ~ N~
X | x < | X
S | & s | & | 1
77777 0
1 2 3 4 261 262

Figure 4.4: Soft bitstream format for the 13 kbit/s RPE-
LTP algorithm, where 260 bits are transmitted per 20
ms transmission frame.

The EID routines for random bit errors are BER_generator and BER_insertion; for ran-
dom frame erasures, FER_generator_random and FER module; for burst frame erasures
FER_generator_burst; and open_eid, open_burst_eid and close_eid for initialization
(allocation) and release of EID state structures SCD_EID and BURST-EID. Their description
can be found next. Besides these, there are other routines which are local (private) to the
EID module, and therefore are not described.

72 ITU-T Software Tool Library, release 2000

4.2.1 open_eid

Syntax:

#include "eid.h"
SCD_EID *open_eid (double ber, double gamma);

Prototype: eid.h
Description:

Allocate memory for EID struct, set up the transmission matrix according to the selected
bit error rate, and initialize the seed for the random number generator. If the symbol
PORT_TEST is defined at compilation time, then the seed will always be initialized to the
same value; otherwise, the seed is initialized with the system time (in seconds). The
former is used to test portability of the EID module, since identical patterns will be
generated?.

Variables:
ber L User desired bit error rate;
Jgamma .. User desired burst factor;

Return value:

Returns a pointer to struct SCD_EID; if the initialization failed, returns a null pointer.

4.2.2 open_ burst_eid

Syntax:

#include "eid.h"
BURST_EID #*open_burst_eid (long inder) ;

Prototype: eid.h
Description:

Allocate memory for a state variable structure of type BURST_EID and setup the trans-
mission matrix according the burst frame erasure rate (BFER) selected by indez, and
initialize the seed for the random number generator. If the symbol PORT_TEST is defined
at compilation time, then the seed will always be initialized to the same value; otherwise,
the seed is initialized with the system time, in seconds (see note in the description of
open_eid()).

Variables:

index .. Indicates one of the three BFER defined for the Bellcore
model. If indezx is equal to 0, the 1% BFER is selected; if 1,
BFER of 3% is used; or, if indez equals 2, a 5% BFER is used;

2 Another way to force the EID to produce identical bit error patterns is to save the EID state variable
(of type SCD_EID) e.g. to a file and, in the next call to the routine, initialize the state variable with the
saved value.

Version: February 25, 2001 73

Return value:

This function returns a pointer to a structure of type BURST_EID. If the initialization
failed, it returns a null pointer.

4.2.3 reset_burst_eid

Syntax:

#include "eid.h"
void reset_burst_eid (BURST_EID *burst_eid) ;

Prototype: eid.h
Description:

Reset a BURST_EID structure previously initialized by a call to open_burst_eid (). By de-
fault, only counters are reset; if the symbol RESET_SEED_AS_WELL is defined at compilation
time, the seed is also reset. However, this is not recommended.

Variables:
burst_eid — BURST_EID structure to be reset.

Return value:

None.

4.2.4 close_eid

Syntax:

#include "eid.h"
void close_eid (SCD_EID *EID);

Prototype: eid.h
Description:
Release the memory previously allocated by open_eid() for the specified EID structure.

Variables:
EID . EID state variables’ structure to be released.

Return value:

None.

4.2.5 BER_generator

Syntax:

#include "eid.h"
double BER_generator (SCD_EID *EID, long lseg, short *EPbuff);

Prototype: eid.h

74 ITU-T Software Tool Library, release 2000

Description:

Generates a softbit error pattern according to the selected channel model present in EID.
The introduction of the bit errors in the bitstream is done by the function BER_insertion.
It should be noted that softbit error pattern buffers do not contain synchronization head-
ers.

Variables:

EID Structure with channel model.

lseg o Length of current frame.

EPbuff ... Bit error pattern buffer with softbits.

Return value:

The bit error rate in the current frame is returned as a double.

4.2.6 FER_generator_random

Syntax:

#include "eid.h"
double FER generator random (SCD_EID *EID);

Prototype: eid.h
Description:

Decides whether a random frame erasure should happen for the current frame according
to the state of the GEC model in the channel memory pointed by EID.

Variables:
EID . Structure with channel model.
Return value:

Returns a double value: 0 if the current frame should not be erased (“good frame”) and
1 if the frame should erased (“bad frame”).

4.2.7 FER_generator_burst

Syntax:

#include "eid.h"
double BER_generator_burst (BURST_EID *FID);

Prototype: eid.h
Description:

Decides whether a burst frame erasure should happen for the current frame according to
the state of the Bellcore model in the channel memory pointed by EID. It should be noted
that in the long run, the overall burst frame erasure rate (BFER) may not be consistent
with the BFER specified by the user (1%, 3%, or 5%). This is an inherent defficiency of
the implemented model and the calling program is responsible for computing the overall

Version: February 25, 2001 75

BFER and monitoring whether this overall BFER is close enough to the desired BFER.

Variables:

EID Structure with Bellcore model parameters.
Return value:

This function returns a double value: 0 if the current frame should not be erased (“good
frame”) and 1 if the frame should erased (“bad frame”).

4.2.8 BER_insertion

Syntax:

#include "eid.h"
void BER_ insertion (long Ilseg, short *zbuff, short *ybuff, short
*error_pattern) ;

Prototype: eid.h
Description:

Disturbs an input bitstream zbuff according to the error pattern provided in error_pattern,
saving the disturbed bitstream in the output buffer ybuff. The input and output bitstream
are compliant to the bitstream format described before, i.e. are comprised of a synchro-
nization header (sync word followed by a frame length word) and softbits representing the
encoded bitstream. The sync and frame length words are always located in the offsets 0
and 1 of the array, respectively. The error pattern contains only softbits. The following
summarizes the bit error insertion rules:

a) input signal (after synchronization header):

e hard bit >0’ represented as 0x007F;
e hard bit >1’ represented as 0x0081.

b) error pattern:

e the probability for undisturbed transmission has values in the range 0x0001. .-
0x007F, being 0x0001 the lowest probability.

e the probability for disturbed transmission has values in the range 0xOO0FF. .-
0x0081, being 0x00FF the lowest probability.

¢) output signal computation (does not affect the syncronization header, which is
copied unmodified from the input buffer to the output buffer):

For input ‘1’ (0x0081):
e if the error pattern is in the range 0x00FF..0x0081 (255..129),
then the output will be 0x0001..0x007F (1..127), respectively;

e if the error pattern is in the range 0x0001..0x007F (1..127), then
the output will be 0x00FF. .0x0081 (255..129), respectively.

76 ITU-T Software Tool Library, release 2000

For input ‘0’ (0xO0T7F):
e if the error pattern is in the range 0x00FF..0x0081 (255..129),
then the output will be 0x00FF. .0x0081 (255..129), respectively;

e if the error pattern is in the range 0x0001..0x007F (1..127), then
the output will be 0x0001. .0x007F (1..127), respectively.

Variables:

Iseg ... Length of current frame (including synchronisation header).

zbuff L Buffer with input bitstream of length /seg.

ybuff ... Buffer with output bitstream of length [seg.

error_pattern Buffer with error pattern (without synchronisation header), of length

Iseg—2.
Return value:

None.

4.2.9 FER.module

Syntax:

#include "eid.h"
double FER.module (SCD_EID *FID, long lseq, short *zbuff, short *ybuff);

Prototype: eid.h
Description:

Implementation of the frame erasure function based on the GEC model allowing a variable
degree of burstiness (as specified by parameter gamma in the state variable structure of type
SCD_EID pointed by EID). This function actually erases the current frame (as described
below), as opposed to function FER generator_random(), which only indicates whether
the current frame should be erased.

e computes the “frame erasure pattern”;

e erases all bits in one frame according the current state of the pattern generator.

The input (undisturbed) and output (disturbed) buffers have samples conforming to the
bitstream representation description in Annex B of G.192. The input and output bit-
stream are compliant to the bitstream format described before, i.e. are comprised of a
synchronization header (sync word followed by a frame length word) and softbits repre-
senting the encoded bitstream. The sync and frame length words are always located in
the offsets 0 and 1 of the array, respectively. Should the frame be erased (depending on
the frame erasure pattern), all softbits are set to 0x0000, which corresponds to a total
uncertainty about the true bit values.

In addition, the lower 4 bits of the sync word in the synchronization header are set to 0.
This makes it easier for the succeeding software to detect an erased frame. The frame
length word is copied unmodified to the output buffer.

Variables:

EID Pointer to a state variable structure structure of type SCD_EID.

Version: February 25, 2001 7

lseg oL Length of current frame (including synchronisation header).
zhuff Pointer to input bitstream. The synchronisation word (zbuff/0])

is processed, the frame length word (zbuff/1]) is not changed.
ybuff Buffer with output bitstream.

Return value:

This function returns a double value: 1 if the current frame has been erased, and 0
otherwise.

4.3 Tests and portability

Portability may be checked by running the same speech file on a proven platform and on a
test platform, for the whole range of input parameters. Results should be identical when
the compilation is done with the symbol PORT_TEST properly defined and the channel
states are set to a same value.

This routine had portability tested for VAX/VMS with VAX-C, MS-DOS with Turbo C
v2.0, Sun-OS with Sun-C, and HPUX with gcc.

4.4 Examples

4.4.1 Description of the demonstration programs

Two programs are provided as demonstration programs for the EID module, eiddemo.c
(version 3.2), eid8k.c (version 3.2), eid-xor.c (version 1.0), gen-patt.c (version 1.4), ep-
stats.c (version 2.0), and eid-int.c (version 1.0).

Program eiddemo . ¢ uses input and output file in the form of a serial bit stream conforming
to the bitstream signal representation, as defined in Annex B of ITU-T G.192. This
program will disturb the input bitstream with errors using the Gilbert Elliot Channel
model for random or burst bit error insertion and for random frame erasures. The Bellcore
model, which is used for burst frame erasures, is supported as a command line option,
but not as default. It should be noted that this program uses function FER_module (), not
function FER_generator_random(), for random frame erasures.

Program eid8k.c was developed during the standardization process of the ITU-T G.729
8 kbit/s speech codec for the task of producing bit error masks which would be used
in the host laboratory hardware-implemented EID. For this program, input files are not
generated, but only bit error pattern files. Consistent with the definition in the STL,
error patterns do not have synchronization headers (sync word and frame length word),
but only softbits representing disturbations of the channel. GEC and the Bellcore model
are supported in this program. The output file format is, as was necessary for the G.729
work, different from a serial bitstream as defined in the STL because the softbits are saved
as char (8-bit words) rather than as short (16-bit words). Conversion of this format to
the STL 16-bit bitstream format can be accomplished using the unsupported program
ch2sh.c.

78 ITU-T Software Tool Library, release 2000

It should be noted that both programs save in files the current state of the EID models
under use and also try to read these state files at startup time (if not found, the programs
create new ones, which are updated when the programs terminate).

Program eid-xor.c is an error-insertion program that simply XORs bits in a bitstream
file (in one out of three formats: G.192, byte-oriented G.192, and compact) with error
patterns (bit errors or frame erasures in one out of three formats) and saves the disturbed
bitstream in a file. The error patterns need not have been produced by any of the EID
models implemented in the STL, they only have to be in one of the three input formats.
Since error patterns are either bit error EPs or frame erasure EPs, simultaneous bit errors
and frame erasures are not allowed by eid-xor.c.

The program gen-patt.c is used to generate error patterns (EPs) using the EID models
implemented in the STL (Gilbert and Bellcore models). The EPs will be either frame
erasures or bit errors EPs, since the models in the STL do not support mixed frame
erasure/bit error mode.

Program ep-stats.c examines an error pattern file (either bit error EPs or frame erasure
EPs) and displays the actual BER/FER found in the EP and the distribution of number
of consecutive errored bits or erased frames.

Program eid-int.c interpolates a frame erasure EP such that each synchronism word
found in the EP is repeated a user-specified number of times. This is useful to align the
frame erasures for codecs that have frame sizes that are an integer sub-multiple of each
other (e.g. 10ms codecs and 20 ms codecs). In the latter example, the master EP will be
the 20ms one, and the one generated by eid-int would be used for the 10ms codec.

As a final note, it should be reinforced that the definition of the symbol PORT_TEST at
compilation time will affect the operation of the programs as explained before. If this
symbol is defined, functions open_eid () and open_burst_eid() will always start from the
same seed. Therefore, the output of the programs will be the same, unless EID state files
are available. When that symbol is not defined at compilation time, the programs will
use the run-time library function time() to get the seed used in functions open_eid ()
and open_burst_eid().

4.4.2 Using the bit error insertion routine

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "ugstdemo.h"
#include "eid.h"

#define OVERHEAD 2
#define LSEG 2048L /* Frame length is FIXED! =/
#define SYNCword 0x6B21

void main(argc, argv)
int argc;

Version: February 25, 2001

char *xargv[];

SCD_EID xber_st; /* pointer to EID-structure */
char ifile[128], ofile[128];/* input/output file names */
FILE xifilptr, *ofilptr; /* input/output file pointer */
static int EOF_detected = 0; /* Flag to mark END OF FILE */
double ber; /* bit error rate factor */
double gamma ; /* burst factor */

static double dstbits = 0; /* distorted bits count */
static double prcbits = 0; /* processed bits count */
short err_pat [LSEG] ; /* error pattern-buffer */
short inp [LSEG+0OVERHEAD], out [LSEG+OVERHEAD]; /* bit-buffers */
GET_PAR_S(1, "_File with input bitstream: nooifile);
GET_PAR_S(2, "_File for disturbed bitstream: ", ofile);
GET_PAR_D(3, "_Bit error rate (0.0 ... 0.50): " ber);
GET_PAR_D(4, "_Burst factor (0.0 ... 0.99): ", gamma) ;

/* Open input and output files */
ifilptr = fopen(ifile, RB);
ofilptr = fopen(ofile, WB);

/* Allocate EID buffer for bit errors */
ber_st = open_eid(ber, gamma) ;
if (ber_st == (SCD_EID *) 0)
QUIT(" Could not create EID for bit errors!'\n", 1);

/* Now process serial soft bitstream input file */
while (fread(inp, sizeof(short), LSEG+OVERHEAD, ifilptr) == LSEG+0VERHEAD)
{
if (inp[0] == SYNCword && EOF_detected == 0)
{
/* Generate Error Pattern */
dstbits += BER_generator(ber_st, LSEG, err_pat);

/* Modify input bitstream according the stored error pattern */
BER_insertion(LSEG+OVERHEAD, inp, out, err_pat);
prcbits += (double) LSEG; /* count number of processed bits */

/* Write disturbed bits to serial soft bitstream output file */
furite(out, sizeof(short), LSEG+OVERHEAD, ofilptr);

}

else
EOF_detected = 1; /* the next SYNC-word is missed */

if (EOF_detected == 1)
printf(" --- end of file detected (no SYNCword match) ---\n");
printf ("\n");

80 ITU-T Software Tool Library, release 2000

/* Print message with measured bit error rate */
if (prcbits > 0)
printf ("Measured BER: %f (%ld of %ld bits distorted)\n",
dstbits / prcbits, (long) dstbits, (long) prcbits);

4.4.3 Using the frame erasure routine

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "ugstdemo.h"
#include "eid.h"

#define QUIT(m,code) {fprintf(stderr,m); exit((int)code);}

#define LSEG 2048L /* Frame length is FIXED! =/
#define OVERHEAD 2

#define SYNCword 0x6B21

void main(argc, argv)

int argc;
char *xargv[];

{
SCD_EID *FEReid; /* pointer to EID-structure */
char ifile[128], ofile[128];/* input/output file names */
FILE *ifilptr, *ofilptr; /* input/output file pointer */
static int EOF_detected = 0; /* Flag to mark END OF FILE %/
double fer; /* frame erasure factor */
double gamma ; /* burst factor */
static double ersfrms = 0; /* total distorted frames */
static double prcfrms = 0O; /* number of processed frames */
short inp [LSEG+0OVERHEAD], out [LSEG+OVERHEAD]; /* bit-buffers */
GET_PAR_S(1, "_File with input bitstream: nooifile);
GET_PAR_S(2, "_File for disturbed bitstream: ", ofile);
GET_PAR_D(3, "_Frame erasure rate (0.0 ... 0.50): v fer);
GET_PAR_D(4, "_Burst factor (0.0 ... 0.99): ", gamma) ;

/* Open input and output files */
ifilptr = fopen(ifile, RB);
ofilptr = fopen(ofile, WB);

/* Allocate EID buffer for bit errors frame erasure */
FEReid = open_eid(fer, gamma);
if (FEReid == (SCD_EID *) 0)
QUIT(" Could not create EID for frame erasure module\n", 1);

Version: February 25, 2001 81

/* Now process serial soft bitstream input file */
while (fread(inp, sizeof (short), LSEG+OVERHEAD, ifilptr) == LSEG + OVERHEAD)
{
if (inp[0] == SYNCword && EOF_detected == 0)
{
/* Generate frame erasure */
ersfrms += FER_module(FEReid, LSEG+0VERHEAD, inp, out);
prcfrms++; /* count number of processed frames */

/* Write (erased) frames to serial soft bitstream output file */
furite(out, sizeof(short), LSEG+OVERHEAD, ofilptr);

}

else
EOF_detected = 1; /* the next SYNC-word is missed */

if (EOF_detected == 1)
printf(" --- end of file detected (no SYNCword match) ---\n");
printf("\n");

/* Print message with measured bit error rate */
if (prcfrms > 0)
printf ("measured FER: %f (%1d of %ld frames erased)\n",
ersfrms / prcfrms, (long) ersfrms, (long) prcfrms);

82

ITU-T Software Tool Library, release 2000

Chapter 5

G.711: The ITU-T 64 kbit/s
log-PCM algorithm

In the early 1960’s an interest was expressed in encoding the analog signals in telephone
networks, mainly to reduce costs in switching and multiplexing equipments and to allow
the integration of communication and computing, increasing the efficiency in operation
and maintenance [19].

In 1972, the then CCITT published the Recommendation G.711 that constitutes the
principal reference as far as transmission systems are concerned [20]. The basic principle
of the algorithm is to code speech using 8 bits per sample, the input voiceband signal
being sampled at 8 kHz, keeping the telephony bandwidth of 300-3400 Hz. With this
combination, each voice channel requires 64 kbit/s.

5.1 Description of the algorithm

The idea behind the digitalization of the network involved a compromise: use as far
as possible the existing infrastructure; this imposes a bandwidth limitation for the bit-
streams of coded signals. A rate of 64 kbit/s was found to be reasonable.

If one thinks of using the most natural quantization scheme, one will choose linear quan-
tization. But one drawback of this approach is that the signal-to-noise ratio (SNR) varies
with the amplitude of the input signals: the smaller the amplitude, the smaller the SNR.
And, from the quality point of view, if a signal has a wide variance, or a variance that
changes with time (as in the case of speech signals), the SNR will also change, resulting
in a wide-varying quality of the system.

To avoid this problem, one can use logarithmic quantization, which will result into a more
uniform quantization noise. With this in mind, several studies were carried out in late
1960’s to choose a good algorithm for this purpose. This led to the definition of two
transmission schemes, one using the p law compression characteristic:

In(1 + pl|z|/Tmaz)
In(1 4+ p)

c(x) = Timaw sgn(z)

83

84 ITU-T Software Tool Library, release 2000

and the other using the A law compression characteristic:

Alx x 1
by | T l|n(|A) sgn(x), for0< 7L < 4
C\Tr) =
1+ In(A maz
P g (), for < <

Both characteristics behave as linear for small amplitude signals (being then equivalent
to a linear quantization scheme), but are truly logarithmic for large signals. In fact, for
large signals the SNRis:

SNR, = 6.02B + 4.77 — 20 log, o (In(1 + 1))

and
SNR4 = 6.02B + 4.77 — 201og,o(1 + In A)

where B is the number of bits used for quantization.

The ITU chose the values A = 87.56 and p = 255 for the G.711 standard, together with
8 bits per sample, what leads the latter two equations to:

SNR, = 6.02B —9.99 = 38.17dB

and
SNR,4 = 6.02B — 10.1 = 38.06dB

The G.711 standard does not specify the law as defined above, but rather uses a good
linear-piecewise approximation for 8 bit samples, which has easier implementation (in
hardware), as well as other properties (see [21, p.229]).

This approximation uses bit 1 for sign (1 for positive, 0 for negative), bits 2—4 to indicate
a segment, and bits 5-8 for level'. Within each segment, the quantization is linear (4 bits,
or 16 levels), having 15 segments of distinct slopes for p law, and 13 for A law.

The A law works with signals in the range from -4096 to 4096, implying in a range of 13
bits. As for the p law, the linear signals are accepted in the range -8159 to 8159, which
is represented by 14 bits. Besides this, in the dynamic range sense, A and u law are
equivalent to 12 and 13 bit linear quantization, respectively.

One detail for the A law is that the even bits are inverted. The reason for this comes from
problems observed (before the standardization of the line code HDB3) in transmission
systems when long sequences of zeros happen, because small amplitudes, in A law, to be
coded mostly using ‘0’ bits. With this bit-inversion, long sequences of bits ‘0’ becomes
less probable, thus improving performance.

The conversion rule for A/ law from/to linear is described in terms of tables in G.711. A
good reason for this is that there is no closed form for the compression of linear samples
(although it is possible to find a closed formulae for the expansion algorithm). Hence,
two implementations are possible: table look-up, and algorithmic. For in-chip (LSI)

!Please note that the bit numbering in the G.711 is the reversal of the commonly used in computer
languages, G.711’s bit 1 corresponding to common-sense’s (most significant) bit 7, and G.711’s bit 8 to
the normal least significant bit 0, respectively.

Version: February 25, 2001 85

implementations, the first one may be preferred, because it is simpler to implement,
at the cost of a wider chip area. For other applications, such as using Digital Signal
Processors (DSPs), or software implementations, table look-up would occupy too much
memory, and the algorithmic solution would be preferred.

5.2 Implementation

This implementation of the G.711 can be found in the module g711.c, with prototypes
in g711.h.

For the reason explained before, an algorithmic approach to the G.711 was followed. For
the compression routines, first the samples are converted from two’s complement to signed
magnitude notation®. So, a segment classification is done, and then the linear quantization
of a certain number of bits of the input sample, that depends on the segment number
(e.g., for A law, segment 1 uses a factor of 2:1, 2 a 4:1, etc.) is carried out. Finally, the
sign of the sample is added. The expansion routines are even simpler: find the sign, get
the mantissa and the exponent, and compute the linear sample.

One important point here is that, following UGST Guidelines, linear input samples must
be left-justified shorts. With this approach, the knowledge of the 0 dB reference for the
file is simplified, and the need of having to apply different normalization factors to files
if they are to be coded by A or u law is eliminated. As an example, suppose that we
want to process a speech file X by the G.711 at an input level of -20 dBov for both A and
i law. Then, if the sample representation is right-justified, and a factor f brings a file’s
level to -20 dBov for p law, then for A law the factor will be 2.f, due to the difference
in input signal’s dynamic range of both laws (4096 and 8159, respectively). On the other
hand, if the samples are left-justified, the factor is only one, and the routines will only
look at the 13 or 14 most significant bits of the 16-bit word, for A and p law, respectively.
In other words, the peak value for linear and A/p law is the same, therefore one factor is
sufficient.

Compliance tests to this code have been done using a ramp file having the full excursion
of the dynamic range for each of the laws, and examining the compressed and expanded
samples against the values expected in tables 1a, 1b, 2a, and 2b of Recommendation G.711
(see [20]). Another test done exploits the synchronous property of the G.711 scheme. Only
samples from column 7 of G.711 tables 1 and 2 were used. These values are transparent
to quantization. Hence, if the coding was done properly, output samples should match
exactly the original ones.

The compression functions are alaw_compress and ulaw_compress, and the expansion
functions are alaw_expand and ulaw_expand. In the next part you find a summary of
calls to these functions.

2Using the samples as two’s complement in the compression algorithm is a very common error whose
effects are only noticeable for small amplitude signals. Our approach agrees to the one in G.726[22], block
compress.

3Tn the case of stand-alone tools, this would mean that two copies of the same file should be available!

86 ITU-T Software Tool Library, release 2000

5.2.1 alaw_compress and ulaw_compress

Syntax:

#include "g711.h"
void alaw compress (long smpno, short *lin_buf, short *log_buf)
void ulaw_compress (long smpno, short *lin_buf, short *log_buf)

Prototype: g71l.h
Description:

alaw_compress performs A law encoding rule according to I'TU-T Recommendation G.711,
and ulaw_compress does the same for p law. Note that input samples shall be left-
justified, and that the output samples are right-justified with 8 bits.

Variables:

SMPNO e Is the number of samples in lin_buf.

lin_buf o Is the input samples’ buffer; each short sample shall con-
tain linear PCM (2’s complement, 16-bit wide) samples, left-
justified.

log_buf, Is the output samples’ buffer; each short sample will contain

right-justified 8-bit wide valid A or u law samples.

Return value: None.

5.2.2 alaw _expand and ulaw_expand

Syntax:

#include "g711.h"
void alaw_expand (long smpno, short *log_buf, short *lin_buf)
void alaw_expand (long smpno, short *log_buf, short *lin_buf)

Prototype: g711.h
Description:

alaw_expand performs A law decoding rule according to I'TU-T Recommendation G.711,
and ulaw_expand does the same for ;1 law. Note that output samples will be left-justified,
and that the input samples shall be right-justified with 8 bits.

Variables:

SMPNO .. Is the number of samples in log_buf.

log_buf Is the input samples’ buffer; each short sample shall contain
right-justified 8-bit wide valid A or p law samples.

linbuf ool Is the output samples’ buffer; each short sample will con-
tain linear PCM (2’s complement, 16-bit wide) samples, left-
justified.

Return value: None.

Version: February 25, 2001 87

5.3 Tests and portability

Portability may be checked by running the same speech file in a proven platform and in
a test platform. Files processed this way should match exactly. Source and processed
reference files for portability tests are provided in the STL distribution.

These routines had portability tested for VAX/VMS with VAX-C and gce, MS-DOS with
Turbo C v2.0, HPUX with gcc, and Sun-OS with Sun-C.

5.4 Example code

5.4.1 Description of the demonstration program

One program is provided as demonstration program for the G.711 module, g711demo.c.

Program g711demo.c accepts input files in 16-bit linear PCM format for compression
operation and produces files in the same format after the expansion operation. The
compressed signal will be in 16-bit, right adjusted format, according to the logarithmic
law specified by the user. Three operations are possible: linear in, linear out (lili) linear
in, logarithmic out (lilo), or logarithmic in, linear out (loli).

5.4.2 Simple example

The following C code gives an example of companding using either the A- or u-law func-
tions available in the STL.

#include <stdio.h>
#include "ugstdemo.h"
#include "g711.h"

#tdefine BLK_LEN 256
#define QUIT(m,code) {fprintf(stderr,m); exit((int)code);}

main(argc, argv)

int argc;
char *xargv([];
{
char law[4];
char FileIn[180], FileOut[180];
short tmp_buf [BLK_LEN], inp_buf [BLK_LEN], out_buf[BLK_LEN];
FILE *Fi, *Fo;
void (*compress) (), (xexpand) (); /* pointer to a function */

/* Get parameters for processing */
GET_PAR_S(1, "_Law (A,u): .. vvrinrnnnnnnn. " law);
GET_PAR_S(2, "_Input File: ", FileIn);

88 ITU-T Software Tool Library, release 2000

GET_PAR_S(3, "_Output File: ", FileQOut);

/* Opening input and output LOG-PCM files */
Fi = fopen(FileIn, RB);
Fo = fopen(FileOut, WB);

/* Choose compression/expansion routinies according to the law */
if (toupper(law[0])=="A")

{
compress = alaw_compress;
expand = alaw_expand;

+

else if (tolower(law[0])=="u’)

{
compress = ulaw_compress;
expand = ulaw_expand;

}

else

QUIT("Bad law chosen!\n",1);

/* File processing */

while (fread(inp_buf, BLK_LEN, sizeof(short), Fi) == BLK_LEN)

{
/* Process input linear PCM samples in blocks of length BLK_LEN */
compress (BLK_LEN, inp_buf, tmp_buf);

/* Process log-PCM samples in blocks of length BLK_LEN */
expand (BLK_LEN, tmp_buf, out_buf);

/* Write PCM output word */
fwrite(out_buf, BLK_LEN, BLK_LEN, sizeof(short), Fo);

/* Close input and output files */
fclose(Fi);

fclose(Fo);

return O;

Chapter 6

G.726: The ITU-T ADPCM
algorithm at 40, 32, 24, and 16 kbit /s

In 1982, a group was established by the then CCITT Study Group XVIII to study the
standardization of a speech coding technique that could reduce the 64 kbit/s rate used in
digital links, as per ITU-T Recommendation G.711 (see related Chapter), by half while
maintaining the same voice quality.

After considering contributions received from several organizations, there was a general
feeling that the ADPCM (Adaptive Differential Pulse Code Modulation) technique could
provide a good quality coder. This process of finalizing an algorithm took 18 months of
development and objective and subjective testings, to culminate in a I'TU Recommenda-
tion, published in October, 1984, and available in the Red Book series as Recommendation
G.721.

Meanwhile, problems were found with the G.721 algorithm of 1984 regarding voice-band
data signals modulated using the Frequency Shift Keying (FSK) technique, and changes
had to be done to the algorithm. These changes were approved in 1986 and published in
the next series of Recommendations of the CCITT, the Blue Book series, superseeding
the Red Book version of the G.721. This is why a note in the Blue Book G.721 warns the
user that the bit stream of coded speech from this version is incompatible with the old
one. Also in that Study Period (1985-1988), a need for other rates was identified, and a
new Recommendation, G.723, was approved to extend the bitrate to 24 and 40 kbit/s.

In the Study Period of 1989-1992, these two Recommendations have been joined into a
single one, keeping full compatibility with the former ones, and adding a lower rate of 16
kbit/s. This new Recommendation was named G.726, and the former G.721 and G.723
have been replaced.

The current version of the STL includes a G.726 implementation. In the section to follow,
the operation of the G.726 algorithm is described only for the 32 kbit/s bit rate. A
complete description of the G.726 algorithm can be found in [22]. Other analyses of the
algorithm, besides some based on the Red Book version, can be found in several studies
[23, 24, 25].

Despite the change in numbering, the ITU-T ADPCM algorithm for speech coding at 32
kbit/s, the term “G.721 algorithm” has been retained for simplicity of the text, although

89

90 ITU-T Software Tool Library, release 2000

a more formal reference should be “G.726 at 32 kbit/s”.

6.1 Description of the 32 kbit/s ADPCM

The basic idea behind the G.721 coder is to code into 4-bit samples the input speech-band
signals, sampled at 8 kHz and represented by the 8-bit of G.711 A or p law samples. The
decoder just implements the reverse procedure.

The ADPCM algorithm of the G.721 exploits the predictability of the speech signals.
Therefore, an adaptive predictor is used to compute the difference signal d(k) (based
on the expanded input log-pcm sample s(k)), which is then quantized by an adaptive
quantizer using 4 bits. These bits are sent to the decoder and then fed into an inverse
quantizer. The difference signal is used to calculate the reconstructed signal, s, (k), which
is compressed (A- or p-law) and output from the decoder (s4(k)).

From this description, one could ask the following:

e If only the quantized signal is transmitted, how can the decoder reconstruct
the signal?

e How can one assure estability of the predictor?

e Will this bitrate reduction degrade the voice quality?

These and others have already been considered in the design of the G.721, and many blocks
of the algorithm are made to assure a good behaviour. For example, one possibility in
this backward approach for adaptation is to have encoder and decoder starting from the
same point, which is accomplished by reseting key variables to a known state (useful
for implementation verification). Leak factors have been introduced to ensure that the
algorithm will always converge, independently of the initial state. To avoid instabilities,
some parameters had their range limited. To provide some insight in the building blocks
of the G.721 algorithm, a short description of each of them is given [22, 24].

6.1.1 PCM format conversion

The input signal s(k), in either A- or u-law format, must be converted into linear samples.
This expansion is accomplished using the same algorithm in G.711 [20], but converting
from signed magnitude to 14-bit two’s complement samples.

6.1.2 Difference Signal Computation

This block simply calculates the difference between the (expanded) input signal and the
estimated signal:

Version: February 25, 2001 91

6.1.3 Adaptive Quantizer

A 15-level, non-uniform adaptive quantizer is used to quantize the difference signal. Before
the quantization, this signal is converted to a logarithmic representation! and scaled by
a factor (y(k)), that is computed in the scale factor adaptation block (see below).

The output of this block is I(k), and it is used twice; first, is the ADPCM coded (quantized)
sample; second, is the input to the backward part of the G.721 algorithm, to provide
information for quantization of the next samples. One relevant point to notice here is
that the backward adaptation is done using the quantized sample. If one starts the
decoder from this very point, one will find identical behaviour. That is why only the
quantized samples are needed in the decoder (i.e., no side information).

6.1.4 Inverse Adaptive Quantizer

The inverse adaptive quantizer takes the signal I(k) and converts it back to the linear
domain, generating a quantized version of the difference signal, d,(k). This is the input
to the adaptive predictor, such that the estimated signal is based on a quantized version
of the difference signal, instead of on the unquantized (original) one.

6.1.5 Quantizer Scale Factor Adaptation

This block computes y(k), the factor used in the adaptive quantizer and inverse quantizer
for domain conversion. As input, this block needs I(k), but also a,(k), the adaptation
speed control parameter. The reason for the latter is that the scaling algorithm has two
modes (bimodal adaptation), one fast, another slow. This has been done to accomodate
signals that in nature produce difference signals with large fluctuations (e.g. speech) and
small fluctuations (e.g. tones and voice-band data), respectively.

This block computes two scale factor (fast, y,(k), and slow, y;(k)) based on I(k), which
combined using a;(k) produce y(k).

6.1.6 Adaptation Speed Control

This block evaluates the parameter a;(k), which can be seen as a proportion of the speed
(fast or slow) of the input signal, and is in the range [0,1]. If 0, the data are considered
to be slowly varying; if 1, they are considered to be fast varying.

To accomplish this, two measures of the average magnitude of I(k) are computed (d,,s(k)
and d,,;(k)). These, in conjunction with delayed tone detect and transition detect flags
(tq(k) and t,(k), calculated in the Tone Transition and Detector block), are used to
evaluate a,(k), whose delayed version (a,(k—1)) is used in the definition of ¢;(k), limiting
the range to [0, 1]2.

!Remember that to multiply samples in the linear domain one may add in the logarithmic one. Using
efficient log and exponentiation algorithms (as done here), this turns out to be very advantageous.
2This limitation delays the start of a fast to slow transition until the average magnitude of (k) remains

92 ITU-T Software Tool Library, release 2000

An analysis of a,(k) gives insight on the nature of the signal: if around the value of 2, this
means that the average magnitude of (k) is changing, or that a tone has been detected,
or that it is idle channel noise; on the other side, if near 0, the average magnitude of I(k)
remains relatively constant.

6.1.7 Adaptive Predictor and Reconstructed Signal Calculator

The adaptive predictor has as its main function to compute the signal estimate based on
the quantized difference signal, d,(k). It has 6 zeroes and 2 poles, structure that covers
well the kind of input signals expected for the algorithm. With these coefficients, and past
values of d,(k) and s.(k), the updated value for the signal estimate s.(k) is computed.

The two sets of coefficients (one for the pole section, a;(k),i = 1..2, other for the zero
section, b;(k),i = 1..6) are updated using a simplified gradient algorithm. At this point,
since a situation in which the poles cause instability may arise, the two pole coefficients a;
have their ranges limited. In addition, if a transition from partial band signal is detected
(signaled by t,.(k)), the predictor is reset (all coefficients are set to 0), remaining disabled

until ¢, comes back to zero>.

The reconstructed signal s, (k) is calculated using the signal estimate s.(k) and the quan-
tized difference signal d,(k).

6.1.8 Tone Transition and Detector

This block is one of the changes from the Red Book version. It was added to improve
algorithm performance for signals originating from FSK modems operating in the char-
acter mode. First, it checks if the signal has partial band (e.g., a tone) by looking at the
predictor coefficient ay(k), that defines the signal ¢4(k). Second, a transition from partial
band signal indicator ¢, (k) is set, such that predictor coefficients can be set to 0 and the
quantizer can be forced into the fast mode of operation.

6.1.9 Output PCM Format Conversion

This block is unique to the decoder. Its sole function is to compress the reconstructed
signal s,(k), which is in linear PCM format, using A or u law, and is a complement of
the PCM format conversion block.

6.1.10 Synchronous Coding Adjustment

This block is also unique to the decoder. It has been devised in order to prevent cumulative
distortions occuring on synchronous tandem codings (ADPCM-PCM-ADPCM, etc., in
purely digital connections, i.e., with no intermediate analog conversions), provided that:

constant for some time; acting so, premature transitions for pulsed input signals, such as switched carrier
voiceband data, are avoided.
3Note that when this happens, the quantizer is forced into the fast mode of adaptation.

Version: February 25, 2001 93

e the transmission of the ADPCM and the intermediate PCM are error-free, and

e the ADPCM and the intermediate PCM are not disturbed by digital signal
processing devices.

6.1.11 Extension for linear input and output signals

An extension of the G.726 algorithm was carried out in 1994 to include, as an option,
linear input and output signals. The specification for such linear interface is given in its
Annex A [26].

This extension bypasses the PCM format conversion block for linear input signals, and
both the Output PCM Format Conversion and the Synchronous Coding Adjustment
blocks, for linear output signals. These linear versions of the input and output signals are
14-bit, 2’s complement samples.

The effect of removing the PCM encoding and decoding is to decrease the coding degra-
dation by 0.6 to 1 qdu, depending on the network configuration considered (presence or
absence of a G.712 filtering).

Currently, this extension has not been incorporated in the STL.

6.2 ITU-T STL G.726 Implementation

The STL implementation of the G.726 algorithm can be found in module g726.c, with
prototypes in g726.h.

Originally in Fortran (VAX Fortran-77), the source was translated by means of the public-
domain code converter f2¢ [27]. This explain why the code makes extensive use of passage
of parameters by reference, rather than by value, and why many functions, that could be
implemented as macros (using the C pre-processor directive #define), are routines, and
as well as all routines return void.

The problem of storing the state variables was solved by defining a structure containing
all the necessary variables, defining a new type called G726_state. By means of this
approach, several streams may be processed in parallel, provided that one structure is
assigned (and that one call to the encoding/decoding routines is done) for each data
stream (this can be advantageous for machines with support for parallel processing). The
G726 state variable structure has the following fields (all are short, except ylp, which is
long):

sr0 Reconstructed signal with delay 0

srl Reconstructed signal with delay 1

alr Delayed 2nd-order predictor coefficient 1
a2r Delayed 2nd-order predictor coefficient 2
bir Delayed 6th-order predictor coefficient 1
b2r Delayed 6th-order predictor coefficient 2
b3r Delayed 6th-order predictor coefficient 3

b4r Delayed 6th-order predictor coefficient 4

94 ITU-T Software Tool Library, release 2000

bor Delayed 6th-order predictor coefficient 5
bér Delayed 6th-order predictor coefficient 6
dq0 Quantized difference signal with delay 0
dql Quantized difference signal with delay 1
dq2 Quantized difference signal with delay 2
dq3 Quantized difference signal with delay 3
dq4 Quantized difference signal with delay 4
dg5 Quantized difference signal with delay 5
dmsp Short term average of the F'(I) sequence
dmlp Long term average of the F'(I) sequence
apr Triggered unlimited speed control parameter
yup Fast quantizer scale factor

tdr Triggered tone detector

pk0 Sign of dq+sez with delay 0

pkl Sign of dq+sez with delay 1

ylp Slow quantizer scale factor

The encoding function is G726 _encode, and the decoding function is G726_decode. There
are 41 other routines that, grouped in individual calls inside the encoder and decoder,
implement the algorithm. Therefore, none of these 41 routines are expected to be accessed
by the user, and only the two main ones.

In the following part a summary of calls to both functions is found.

6.2.1 G726_encode

Syntax:

#include "g726.h"
void G726_encode (short *mnp_buf, short *out_buf, long smpno, char
*law, short rate, short reset, G726_state *state)

Prototype: g726.h
Description:

Simulation of the ITU-T G.726 ADPCM encoder. Takes the A or u law input array of
shorts inp_buf (16 bit, right-justified, without sign extension) with smpno samples, and
saves the encoded samples in the array of shorts out_buf, with the same number of samples
and right-justified. An example of the sample packing for the G.726 encoded bitstream
is shown in figure 6.1.

The state variables are saved in the structure state, and the reset can be stablished by
making reset equal to 1. The law is A if law=="1’, and mu law if law=="0".

Variables:

mp_buf Is the input samples’ buffer; each short sample shall contain
right-justified 8-bit wide valid A or p law samples.
out_buf ... Is the output samples’ buffer; each short sample will contain

Version: February 25, 2001 95

Bits Bits

————— 15 - 15

14 14

5 4

o 1 smpno-1 o 1 smpno-1
40 kbit/s mode (5 bits/sample) 32 kbit/s mode (4 bits/sample)

Bits Bits

fffff 15 - 15

14 14

3 2

N A NN I2 - | = - | = |1
Qe ° e o | o o | o

1

22 212 33 2180
o 1 smpno-1 o 1 smpno-1
24 kbit/s mode (3 bits/sample) 16 kbit/s mode (2 bits/sample)

Figure 6.1: Packing of G.726-encoded signals (right-aligned, parallel format).

right-justified 2-, 3-, 4-, or 5-bit wide G.726 ADPCM samples,
depending on the rate used.

SMPNO .. Is the number of samples in inp_buf.

law o Is a char indicating if the law for the input samples is A (’1°)
or 4 (’07). See note below.

rate . Is a short indicating the number of bits per sample to used
by the algorithm: 5, 4, 3, or 2.

reset ...l Is the reset flag (see note below):

e [: reset is to be applied in the variables;
e (). processing is carried out without setting state variables
to the reset state.
Please note that this should normally be done only in the first
call to the routine in processing a sample stream.

state L The state variable structure; all the variables here are for in-
ternal use of the G.726 algorithm, and should not be changed
by the user. Fields of this structure are described above.

Note: Please note the difference between reset and law: reset must be either 1 (0x01)
or 0 (0x00), not ‘1’ (0x31) or ‘0’ (0x30), while law is exactly the opposite.

Return value: None.

6.2.2 G726_decode

Syntax:

#include "g726.h"
void G726_decode (short *mnp_buf, short *out_buf, long smpno, char
*law, short rate, short reset, G726_state *state)

96 ITU-T Software Tool Library, release 2000

Prototype: g726.h
Description:

Simulation of the ITU-T G.726 ADPCM decoder. Takes the ADPCM input array of
shorts inp_buf (16 bit, right- justified, without sign extension) of length smpno, and saves
the decoded samples (A or p law) in the array of shorts out_buf, with the same number
of samples and right-justified.

The state variables are saved in the structure state, and the reset can be stablished by
making reset equal to 1. The law is A if law=="1’, and mu law if law=="0".

Variables:

mp_buf Is the input samples’ buffer; each short sample will contain
right-justified 2-, 3-, 4-, or 5-bit wide G.726 ADPCM samples.

out_buf ... Is the output samples’ buffer; each short sample shall contain
right-justified 8-bit wide valid A or p law samples.

SMPNO .. Is the number of samples in inp_buf.

law o Is a char indicating if the law for the input samples is A (’1°)
or 4 (’07). See note below.

rate . Is a short indicating the number of bits per sample to used
by the algorithm: 5, 4, 3, or 2.

reset .. Is the reset flag (see note below):

e [: reset is to be applied in the variables;
e (: processing done without setting state variables to reset
state.
Please note that this should normally be done only in the first
call to the routine in processing a sample stream.

state The state variable structure; all the variables here are for in-

ternal use of the G.721 algorithm, and should not be changed
by the user. Fields of this structure are described above.

Note: Please note the difference between reset and law: reset must be either 1 (0x01)
or 0 (0x00), not ‘1’ (0x31) or ‘0’ (0x30), while law is exactly the opposite.

Return value: None.

6.3 Portability and compliance

Code testing has been done using the reset test sequences for 40, 32, 24, and 16 kbit/s
provided in the G.726 test sequence diskettes (available from the ITU sales department).
Other tests were also done with speech files for the 32 kbit/s mode, comparing with
reference implementations, most noticeably the one from AT&T Bell Laboratories, which
is the original implementation. Both test approaches generated 100% compatibility of
this implementation with the G.726. *

The portability of the STL G.726 encoding function has been tested by feeding the routine
with the reset test sequences of the G.726 test sequences diskettes (available from the ITU

“The problem with the A-law 40 kbit/s test vector ri40fa.o present in the STLI6 has been solved in
the STL2000.

Version: February 25, 2001 97

Secretariat). As inputs, a binary version of the files nrm.a, ovr.a, nrm.m, ovr.m have been
used for the 4 bit rates; the output of G726_encoder was then compared with a binary
version of the files rnrrfa.i, rvrrfa.i, rnrrfm.i, rvrrfm.i, rr = 16, 24, 32, 40, accordingly for
each input sequence and rate. The encoding routine passed the test when no differences
in the bit streams were found.

The portability test of the decoding function was carried out by feeding this routine
with the pertinent test sequences of the (G.726 Test Sequences Diskettes. As inputs, a
binary version of the files rnrrfa.i, rvrrfa.i, rnrrfa.i, rvrrfa.i, rnrrfm.i, rvrrfm.d, rnrrfm.i,
rvrrfm.i, and irr (twice: one for A and another for ; law) have been used, rr being 16,
24, 32, and 40. The output of G726_decoder was then compared with a binary version
of the files rnrrfa.o, rvrrfa.o, rnrrfx.o, rvrrfx.o, rnrrfm.o, rvrrfm.o, rnrrfc.o, rvrric.o,
rirrfa.o, rirrfm.o (rr as above), respectively for each input sequences. All test vectors
were properly processed.

These routines have been tested in VAX/VMS with VAX-C and GNU-C, in the PC with
Borland C v3.0 (16-bit mode) and GNU-C (32-bit mode). In the Unix environment for
Sun cc, acc, and gce, and in HP for gcc.

6.4 Example code

6.4.1 Description of the demonstration programs

Two programs are provided as demonstration programs for the G.726 module, g726demo.c
and vbr-g726.c.

Program g726demo . c accepts input files in either 16-bit, right-justified A- or p-law format
(as generated by g71ldemo.c) and encodes and/or decodes using one of the G.726 bit
rates (16, 24, 32, or 40 kbit/s). Linear PCM files are not accepted by the program. Three
operations are possible: logarithmic in, logarithmic out (lolo) logarithmic in, ADPCM
out (load), or ADPCM in, logarithmic out (adlo).

Program vbr-g726.c can perform the same functions as g726demo . c, however it is capa-
ble of two additional features. It can perform in variable bit rate mode, which is switched
at user-specified frame sizes (i.e. number of samples), and it can operate from 16-bit
linear PCM input files. In the latter case, A-law is used to compand the linear signal
prior to G.726 encoding, since G.726 Annex A [26] is not yet implemented in the STL.

6.4.2 Simple example

The following C code gives an example of G.726 coding and decoding using as input
speech previously encoded by either the A- or p-law functions available in the STL. The
output samples will be encoded using the same law of the input signal.

#include <stdio.h>
#include "ugstdemo.h"
#include "g726.h"

98 ITU-T Software Tool Library, release 2000

#define BLK_LEN 256

void main(argc, argv)

int argc;
char *xargv[];
{
G726_state encoder_state, decoder_state;
char law[4];
short bitrate, reset;
char FileIn[180], FileOut[180];
short tmp_buf [BLK_LEN], inp_buf [BLK_LEN], out_buf[BLK_LEN];
FILE *Fi, *Fo;

/* Get parameters for processing */

GET_PAR_S(L, "_LAW: «eeemeeemeeaeeeanns "o law);

GET_PAR_I(2, "_Bit-rate:vvvvvennennn.. " bitrate);
GET_PAR_S(2, "_Input File:ccoun.. " Fileln);
GET_PAR_S(3, "_QOutput File: " FileOut);

/* Opening input and output LOG-PCM files */
Fi = fopen(FileIn, RB);
Fo = fopen(FileOut, WB);

/* File processing */
reset = 1; /* set reset flag as YES */
while (fread(inp_buf, BLK_LEN, sizeof(short), Fi) == BLK_LEN)
{
/* Process input log PCM samples in blocks of length BLK_LEN */
G726_encode (inp_buf, tmp_buf, BLK_LEN, law, bitrate, reset, &encoder_state);

/* Process ADPCM samples in blocks of length BLK_LEN */
G726_decode (tmp_buf, out_buf, BLK_LEN, law, bitrate, reset, &decoder_state);

/* Write PCM output word */
fwrite(out_buf, BLK_LEN, sizeof(short), Fo);

if (reset)

reset = 0; /* set reset flag as NOMORE */
}
/* Close input and output files */
fclose(Fi);
fclose(Fo);

Chapter 7

G.727: The ITU-T embedded
ADPCM algorithm at 40, 32, 24,
and 16 kbit /s

7.1 Description of the Embedded ADPCM

The G.727 algorithm is specified in ITU-T Recommendation G.727 [28] with the block
diagram shown in Figure 7.1, and will not be further described here. Additional infor-
mation can be found in [25], where a thorough comparison is made between different
ADPCM schemes, including G.726 and G.727. Details on the linear interface for the
G.727 algorithm are found in G.727 Annex A [29].

7.1.1 Extension for linear input and output signals

An extension of the G.727 algorithm was carried out in 1994 to include, as an option,
linear input and output signals. The specification for such linear interface is given in its
Annex A [29].

This extension bypasses the PCM format conversion block for linear input signals, and
both the Output PCM Format Conversion and the Synchronous Coding Adjustment
blocks, for linear output signals. These linear versions of the input and output signals are
14-bit, 2’s complement samples.

The effect of removing the PCM encoding and decoding is to decrease the coding degra-
dation by 0.6 to 1 qdu, depending on the network configuration considered (presence or
absence of a G.712 filtering).

Currently, this extension has not been incorporated in the STL.

99

100 ITU-T Software Tool Library, release 2000

I(k) ADPCM Recg?;;gfcted
» output » ¢
P calculator

Lsr(k)

s(k) Input PCM Difference . Feed-back le (K) Inverse)
—» format —» signal P Ad$_t|ve > bit > adaptive Ad"ziv[_"[["e s
conversion 5) computation dk) quantizer 1) masking quantizer dq (k) predictor % ()

’ Y 4 T a,(K)
] I

Quantizer i Adaptation < Tone and
scale factor y(k) speed (s transition
adaptation

ap ay(k) control %) detector

) t

(a) Encoder

Feed-forward dq Krr Feed-forward S (K)ee Output PCM sp(K) Synchronous s4(K)
inverse adaptive reconstructed »- format » coding —»
quantizer signal calculator conversion adjustment
$yw t
,)) Feed-back 4q(eg Feed-back
1'(k) Feed-bgck bit © inverse adaptive reconstructed —
ADPCM masking quantizer signal calculator
input
4 s 5, (K)eg

Adaptive
predictor
4
t(K)
Quantizer " < Tone and
scale factor y(k) s ?;ip ::Egﬂr]ol transition
adaptation P detector
afk) ty(k)

¥, () 1 T

(b) Decoder

Figure 7.1: G.727 encoder and decoder block diagrams

Version: February 25, 2001 101

7.2 ITU-T STL G.727 Implementation

The STL implementation of the G.727 algorithm can be found in module g727.c, with
prototypes in g727 .h.

The problem of storing the state variables was solved by defining a structure containing
all the necessary variables, defining a new type called G727_state. As for other STL
modules, the use of the state variable allows for parallel processing flows in the same
executable program. The internal elements of the state variable G727_state should not
be modified by the user, and are not described here.

The encoding function is G727_encode, and the decoding function is G727_decode. Addi-
tionally, initialization and reset of the state variable is performed by g727_reset. There
are other internal routines which are not for access by the user, and hence are not described
here. Their usage description is given below.

7.2.1 G727_reset

Syntax:

#include "g727.h"
void G727_reset (g727_state *st);

Prototype: g727.h

Description:
Reset ITU-T G.727 embedded ADPCM encoder or decoder state variable.

7.2.2 G727_encode

Syntax:

#include "g727.h"
void G727_encode (short *src, short *dst, short smpno, short law,
short cbhits, short ebits, g727 _state *state);

Prototype: g727.h
Description:

Simulation of the ITU-T G.727 embedded ADPCM encoder. Takes the A or p law input
array of shorts src (16 bit, right- justified, without sign extension) of length smpno, and
saves the encoded samples in the array of shorts dst, with the same number of samples and
right-justified. The ADPCM samples will have cbits core bits, and ebits enhancement
bits.

The state variables are saved in the structure state, which should be initialized by g727_reset ()
before use. A-law is used if law=="1", and p-law if law=="0".

Variables:

STC Is the input samples’ buffer; each short sample shall contain

102 ITU-T Software Tool Library, release 2000

right-justified 8-bit wide valid A or u law samples.

dst Buffer with right justified short ADPCM-encoded samples
with cbits core bits and ebits enhancement bits. Unused MSbs
are set to zero.

SMPNO ... Is a short indicating the number of samples to encode.

law o Is a char indicating if the law for the input samples is A (’1°)
or i (°07).

chits ...l Number of core ADPCM bits.

ebits .. Number of enhancement ADPCM bits.

state The state variable structure; all the variables here are for in-
ternal use of the G.727 algorithm, and should not be changed
by the user.

Return value: None.

7.2.3 G727_decode

Syntax:

#include "g727.h"
void G727_decode (short *src, short *dst, short smpno, short law,
short cbhits, short ebits, g727_state *state);

Prototype: g727.h
Description:

Simulation of the ITU-T G.727 embedded ADPCM decoder. Takes the ADPCM input
array of shorts src (16 bit, right-justified, without sign extension) of length smpno, and
saves the decoded samples (A or p law) in the array of shorts dst, with the same number
of samples and right-justified. The ADPCM samples must have cbits core bits, and
ebits enhancement bits.

The state variables are saved in structure st, which should be initialized by g727_reset ()

before use. The law is A if law=="1", and p law if law=="0".

Variables:

STC Buffer with right justified short ADPCM-encoded samples
with cbits core bits and ebits enhancement bits. Unused MSbs
are zero.

dst Is the input samples’ buffer; each short sample shall contain
right-justified 8-bit wide valid A or p law samples.

SMPNo ... Is a short indicating the number of samples to encode.

law Is a char indicating if the law for the input samples is A (?1°)
or i (’0%).

chits Number of core ADPCM bits.

ebits ...l Number of enhancement ADPCM bits.

state L The state variable structure; all the variables here are for in-
ternal use of the G.727 algorithm, and should not be changed
by the user.

Return value: None.

Version: February 25, 2001 103
7.3 Portability and compliance

Code testing has been done using the reset test sequences for 5, 4, 3, and 2 bits with
the valid combination of core and enhancement bits. The reset test sequences can be
acquired from the I'TU Sales Department, and are not distributed with the STL. The
testing procedure is implemented in the makefiles, which use a binary version of the test
vectors. The implementation passed the compliance test when no differences were found
between tested and reference test vectors. All test vectors were verified to be properly
processed.

These routines have been tested in in MS-DOS with Turbo C++ v1.0 (16-bit mode) and
GNU-C (go32 32-bit mode), and in Windows/32 with MS Visual C and CYGNUS/gcc.
In the Unix environment, they have been tested for SunOs (cc, acc, and gee), HP-UX
(gee), and Ultrix 4.0 (cc and gee).

7.4 Example code

7.4.1 Description of the demonstration program

One program is provided as demonstration program for the G.727 module, g727demo.c.

Program g727demo . ¢ accepts input files in either 16-bit, right-justified A- or u-law format
(as generated by g7lldemo.c) and encodes and/or decodes using the G.727 algorithm
for the user-specified number of N, core bits and N, enhancement bits. The effective
encoding bitrate will then be 16 x (N, + N,) kbit/s. Linear PCM files are not accepted
by the program, since G.727 Annex A [29] is not yet implemented in the STL. Three
operations are possible: logarithmic in, logarithmic out (default) logarithmic in, ADPCM
out (option -enc), or ADPCM in, logarithmic out (option -dec).

7.4.2 Simple example

The following C code gives an example of G.727 coding and decoding using as input
speech previously encoded by either the A- or p-law functions available in the STL. The
output samples are encoded using the same law of the input signal.

#include <stdio.h>
#include "ugstdemo.h"
#include "g727.h"

#define BLK_LEN 256

void main(argc, argv)
int argc;
char *xargv([];
{

G727_state encoder_state, decoder_state;

104

char
short
char
short
FILE

ITU-T Software Tool Library, release 2000

law;

core, enh;

FileIn[180], FileOut[180];

tmp_buf [BLK_LEN], inp_buf [BLK_LEN], out_buf [BLK_LEN];
*Fi, *Fo;

/* Get parameters for processing */

GET_PAR_C(1,
GET_PAR_I(2,
GET_PAR_I(2,
GET_PAR_S(2,
GET_PAR_S(3,

L 71 " law);
"_Core bits:iiiiiiin.. ", core);
"_Enhancement bits: ", enh);
"_Log-PCM Input File: " Fileln);
"_Log-PCM Output File: ", FileOut);

/* Opening input and output LOG-PCM files */

Fi
Fo

fopen(FileIn, RB);
fopen(FileOut, WB);

/* Reset state variables */
g727_reset(&encoder_state) ;
g727_reset (&decoder_state);

/* File processing */
while (fread(inp_buf, BLK_LEN, sizeof(short), Fi) == BLK_LEN)

{

/* Process input log PCM samples in blocks of length BLK_LEN */
G727 _encode (inp_buf, tmp_buf, BLK_LEN, law, core, enh, &encoder_state);

/* Process ADPCM samples in blocks of length BLK_LEN */
G727_decode (tmp_buf, out_buf, BLK_LEN, law, core, enh, &decoder_state);

/* Write PCM output word */
fwrite(out_buf, BLK_LEN, sizeof(short), Fo);

/* Close input and output files */

fclose(Fi);
fclose(Fo);

Chapter 8

G.722: The ITU-T 64, 56, and 48
kbit /s wideband speech coding
algorithm

With the emergence of ISDN networks offering digital connectivity at 64 kbit/s between
subscribers, the possibility was given to improve the standard telephone quality by increas-
ing the transmitted bandwith. A bandwith of 50-7000 Hz corresponding to a sampling
of 16 kHz was chosen because it provides a substantial improvement of the quality for
applications where the speech is to be heard through high quality loudspeakers e.g. for
audio or video conference services, commentary broadcasting, and high quality handsfree
phones.

An expert group was created in November 1983 whose mandate was to define a single
worldwide standard for 7 kHz speech coding within 64 kbit/s. After many contribu-
tion received from several organisations, it has been decided to choose a coder which
combined subband filtering and adaptive differential pulse-code modulation algorithms
(SB-ADPCM). The final recommendation was produced in March 1986 and approved in
July 1986 by the then CCITT SG XVIII as Recommendation G.722 [30].

The full description on the implementation of the G.722 algorithm is found in [30], and
network aspects related to its operation are found in [31]. Figure 8.1 summarizes some
systemic aspects for the deployment of the G.722 algorithm. Overview and notes on the
development of the G.722 algorithm can be found in several in [32, 33, 34, 35, 36, 37].
The following description of the G.722 algorithm is based on the text in [38].

8.1 Description of the 64, 56, and 48 kbit/s G.722
algorithm

In order to improve the transmitted speech quality, the input signal has to be converted
after antialiasing filtering by an analog-to-digital (A/D) converter operating at a 16 kHz
sampling rate and with a resolution of at least 14 uniform PCM bits. Similarly, at
the receive side, a digital-to-analog (D/A) converter operating at a 16 kHz sampling

105

106

ITU-T Software Tool Library, release 2000

Auxiliary Data o

Channd : ADPCM Coder 16kbit/s
Wideband | AID upper so-band [|| ~—
Speech o——={ 14bits Quacature - Daa -
: 16kH Devi ‘
(50-7000Hz) z ADPCM Coder f 3 evice 2
: lower sub-band 48Kbitls f : 5’
‘ 64kbit/s Operating : §
‘ |
i Transmission Mode | %,
77 12
o)
2
,, 1 %
: o
. Reception ‘ s
3 ADPCM Decoder | _ 16Kbit/s Sakbit's -
: . o
‘ . |
Reconstructed DIA upper sub-band — - g
Speech Signal <— 14bits Qu'gtlitr;ts e DMux Extraction <— --&
50-7000HZ i 16kHz ADPCM Decoder Device ‘
() f 1 Lower sub-band J
: (3 variants) 48kbit/s
Operating Mode
Auxiliary Data
Channel
Notes:

* Operating modes:
Mode 1:
Mode 1-his:
Mode 2:
Mode 3:
Mode 3-his:

64kbit/s for speech and Okbit/s for auxiliary data
56kbit/s for speech and Okbit/s for auxiliary data
56kbit/s for speech and 8kbit/s for auxiliary data

48kbit/s for speech and 16kbit/s for auxiliary data

48kbit/s for speech, 6.4kbit/s for auxiliary data and
1.6kbit/s for service channel framing and mode control

* Operating modes 1-bis and 3-bis are applicable only to US national 56 kbit/s networks

* The signal in the 64kbit/s channel comprises 64, 56 or 48 kbit/s for speech and O, 8 or 16 kbit/s
for data, depending on the operating mode.

Figure 8.1: G.722 encoder and decoder block diagrams

Version: February 25, 2001 107

Xy HIGHER SUB-BAND 16 kbit's
TRANSMIT ADPCM ENCODER | _
Xin QUADRATURE H Vx| B4 KbiUs ~
MIRROR .
FILTERS X, LOWER SUB-BAND 48 kbit/s [
ADPCM ENCODER |
L

Figure 8.2: Block diagram of the SB-ADPCM encoder

rate and with a resolution of at least 14 uniform PCM bits should be used, followed
by a reconstructing filter. The specifications of the transmission characteristics of the
audio parts suited for the G.722 algorithm are described in the Recommendation. Some
flexibility of the output bit rate was implemented to allow the opening of an auxilary data
channel within the 64 kbit/s channel.

8.1.1 Functional description of the SB-ADPCM encoder

Figure 8.2 shows a block diagram of the SB-ADPCM encoder which comprises the fol-
lowing main blocks.

Transmit quadrature mirror filters

The input signal zin is first filtered by two quadrature mirror filters (QMF) which split
the frequency band [0, 8000 Hz] into two equal subbands. The outputs xl and xh of the
lower and higher subbands are downsampled at 8 kHz by the filtering procedure.

Lower subband ADPCM encoder

Figure 8.3 shows a block diagram of the lower subband ADPCM encoder. The encoder
was designed to operate at 6, 5 or 4 bits per sample corresponding to 48, 40 or 32 kbit/s
to transmit the lower band. The ADPCM algorithm is very similar to the embedded
ADPCM algorithm of ITU-T Recommendation G.727 [28]. It is an embedded ADPCM
with 4 core bits and 2 additionnal bits. The embedded property was introduced to prevent
degradation in speech quality when the encoder and the decoder operate during short
intervals in different modes.

Adaptive quantizer A 60-level non-uniform adaptive quantizer is used to quantize the
difference el between the input signal x/ and the estimated signal sl. The output of the
quantizer Il is the ADPCM codeword for the lower subband. The 4 forbidden output
codewords were primarily introduced to prevent the generation of all zero codes at all
modes, but have also later be used to recover the 8 kHz frame used by the coder.

Inverse adaptive quantizer In the feedback loop the two least significant bits of Il
are deleted to produce a 4 bit signal Ilt which is used for the adaptation of the quantizer

108 ITU-T Software Tool Library, release 2000

X + e 60-LEVEL | 48 kbit/s
L & ADAPTIVE -

A\ QUANTIZER

DELETE
THE 2
LSB's

QUANTIZER

< —— @ I
L ADAPTATION

Lt

15-LEVEL
INVERSE
ADAPTIVE
QUANTIZER

d,]

S, ADAPTIVE
" PREDICTOR +

Figure 8.3: Block diagram of the lower subband ADPCM encoder

Version: February 25, 2001 109

scale factor and applied to a 15-level inverse adaptive quantizer to produce the quantized
difference signal dit.

Quantizer adaptation In order to maintain a wide dynamic range and minimize com-
plexity, the quantizer scale factor adaptation is performed in the base 2 logarithmic do-
main. The log-to-linear conversion is accomplished using a lookup table. There is no
adaptation of the speed control parameter as in 32 kbit/s ADPCM [22] because the en-
coder is not designed to transmit voiceband data.

Adaptive predictor and reconstructed signal computation The adaptive predic-
tor structure is similar to the one used for G.727 ADPCM standard: 2 poles and 6 zeroes.
The two sets of coefficients (one for the poles and the other for the zeroes section) are up-
dated using a simplified gradient algorithm. Stability constraints are applied to the poles
in order to prevent possible unstable conditions. However, no predictor reset is applied
for some specifics inputs conditions as it is done in G.726 algorithm. The reconstructed
signal rlt is computed by adding the quantized difference signal dit to the signal estimate
sl produced by the adaptive predictor. The use of a 4-bit operation instead of a 6-bit
operation in the feedback loops of the lower band ADPCM encoder and decoder allows
for the insertion of data in the two least significant bits without causing mistracking in
the decoder.

Higher subband ADPCM encoder

Figure 8.4 shows a block diagram of the higher subband ADPCM encoder. This encoder
is designed to operate at 2 bits per sample, corresponding to a fixed bit rate of 16 kbit/s.
The encoder algorithm is very similar to the lower band one but with the following main
differences. The quantizer is a 4-level non-linear adaptive quantizer. The higher subband
ADPCM encoder is not embedded, hence the inverse quantizer uses the 2 bits in the
feedback loop.

Multiplexer

The resulting codewords from the higher and lower subbands Ih and Il are combined
to get the output codeword I with an octet format for transmission every 8 kHz frame
producing a 64 kbit/s rate at the encoder output. Notice that the 8 kHz clock may be

provided by the network as it is always done for 64 kbit/s A-law or p-law log-PCM (G.711)
systems.

8.1.2 Functional description of the SB-ADPCM decoder

Figure 8.5 shows a block diagram of the SB-ADPCM decoder.

110 ITU-T Software Tool Library, release 2000

X, F e 4-LEVEL | 16 kbit/s
" @ "> ADAPTIVE L o
QUANTIZER

Ae QUANTIZER ®
H ADAPTATION
4-LEVEL
INVERSE
ADAPTIVE
QUANTIZER
dy
Sy ADAPTIVE
& " PREDICTOR +
My n

Figure 8.4: Block diagram of the higher subband ADPCM encoder

Version: February 25, 2001 111

e HIGHER SUB-BAND My
ADPCM ENCODER
| 16 kbit/s RECEIVE X,
r DMUX QUADRATURE o>
64 Kbit/s I, LOWER SUB-BAND r MIRROR
ADPCM DECODER FILTERS
48 kbit/s (3 VARIANTS)

N

mode indication

Figure 8.5: Block diagram of the SB-ADPCM decoder

Demultiplexer

The demultiplexer decomposes the received 64 kbit/s octet formatted signal Ir into two
signals Ilr and Ihr which form the codeword inputs for the lower and higher subband
ADPCM decoders.

Lower subband ADPCM decoder

Figure 8.6 shows a block diagram of the lower subband decoder. This decoder can operate
in three different modes depending on the received mode indication and corresponding
to 64, 56 or 48 kbit/s. The block which produces the estimate signal is identical to the
feedback portion of the lower subband ADPCM encoder. The reconstructed signal r[is
produced by adding the signal estimate to the relevant quantized difference signals d16, d15
or dl4, which are selected according to the received indication of the mode of operation.

Higher subband ADPCM decoder

This decoder (see Figure 8.7) is identical to the feedback portion of the higher subband
ADPCM encoder which is described in the section 8.1.1, the output being the recon-
structed signal rh.

Receive QMF

The receive QMF are two reconstruction filters which interpolate the ouputs of the lower
and higher subband ADPCM decoders from 8 to 16 kHz (rh and rl) and generate the
global reconstructed output xout sampled at 16 kHz. Signal xout is converted to analog
by the digital to analog converter of the receiving side.

8.2 ITU-T STL G.722 Implementation

This implementation of the G.722 algorithm is composed of several source files. The
interface routines are in file g722.c, with prototypes in g722.h. The original code of

112 ITU-T Software Tool Library, release 2000

mode indication

15-LEVEL L
DELETE (ILI) INVERSE (st) °
2 LSB's ADAPTATIVE
I 4 QUANTIZER dig
| | 30-LEVEL d d * ;
Lr ~Na DELETE L5 INVERSE L5 a L L
" 1LSB ADAPTATIVE d +
48 kbit/s QUANTIZER E +
L
E
c
T
60-LEVEL d o
! ILe INVERSE L6 o R
@ ADAPTATIVE e
QUANTIZER
DELETE
2LSB's
| QUANTIZER
e ® ADAPTATION >" 4,
15-LEVEL
INVERSE
ADAPTATIVE
QUANTIZER
dLI
L S,
ADAPTATIVE
+ r PREDICTOR
‘ Lt
+

Figure 8.6: Block diagram of the lower subband ADPCM decoder

4-LEVEL | d,

l INVERSE N Mn
L 2 L 2 —_ @

. ADAPTATIVE
16 kbit's QUANTIZER +
A ADAPTATIVE Sh
L PREDICTOR
QUANTIZER
ADAPTATION

Figure 8.7: Block diagram of the higher subband ADPCM decoder

Version: February 25, 2001 113

the STL G.722 was provided by CNET /France and its user interface was modified to be
consistent with the other software modules of the STL.

The problem of storing the state variables was solved by defining a structure called
g722_state which containing all the necessary state variables. By means of this ap-
proach, several streams may be processed in parallel!, provided that one structure is
assigned (and that one call to the encoding/decoding routines is done) for each data
stream (this can be advantageous for machines with support for parallel processing). The
G.722 state structure has the following fields (which are all shorts):

ah, al Second-order pole section coefficient buffer for higher and lower
band, respectively

bh, bl Seventh-order zero section coefficient buffer for higher and lower
band, respectively

deth, detl Delayed quantizer scale factor for higher and lower band,
respectively

dh Quantizer difference signal memory

dlt Quantizer difference signal for the adaptive predictor

nit_qgmf_rz Flag indicating the need to initialize the QMF filters on the
reception (decoder) side

mnit_gmf_tz Flag indicating the need to initialize the QMF filters on the
transmission (encoder) side

nbh, nbl Delayed logarithmic quantizer factor for higher and lower band,
respectively

ph, plt Partially reconstructed signal memory for higher and lower band,
respectively

gmf-rr_delayz ~ Memory of past 24 received (decoded) samples
gmf-tr_delayz ~ Memory of past 24 transmitted (encoded) samples

rh[3] Quantized reconstructed signal

rit[3] Reconstructed signal memory for the adaptive predictor

sh, sl Predictor output value for higher and lower band, respectively
sph, spl Pole section output signal for higher and lower band, respectively
szh, szl Zero section output signal for higher and lower band, respectively

The bitstream generated by the STL G.722 encoder has 8 valid bits for each encoded
sample, saved in right-justified shorts. The lower 6 bits are the lower-subband encoded
bits, and the upper two bits of the 8 valid bits are the upper-subband encoded bits.
When the decoder is not in operation mode 1, the decoder will descard 1 or 2 of the lower
bits of the lower-subband. It should be noted that, when bit errors are inserted in this
bitstream and the operation mode is not mode 1, the actual bit error rate seen by the
decoder may not be the one actually desired. One may consider that, in simulating a
system where auxiliary data channels are used, such as modes 2 and 3, this is actually the
desired behaviour, because errors hitting the auxiliary data will not affect the decoded
speech quality. However, if simulation of modes 1-bis or 3-bis is intended, then the some

!This feature was not possible with the original code provided by CNET and was added in the
modifications of the user interface.

114 ITU-T Software Tool Library, release 2000

of the errors hitting the lower 1 (mode 1-bis) or 2 bits (mode 3-bis) will not be seen by
the decoder, and the overall bit error rate will actually be smaller than the desired one.
There are two possible approaches to circumvent this problem:

e the use of an external program to shift the bitstream samples one or two bits (re-
spectively for modes 1-bis or 3-bis) to the right before the bitstream serialization
process for use with the STL EID module, and an external program to left-shift the
bitream samples by one or two bits after error insertion and before using the STL
G.722 decoder. This solution is valid for both random and burst bit errors.

e to increase proportionally the bit error rate by 1/8 (mode 1-bis) or 1/4 (mode 3-bis),
to statistically compensate for errors hitting unsued bits. This solution is valid only
for random bit errors.

From the users’ perspective, the encoding function is g722_encode, and the decoding func-
tion is g722_decode. Before using these functions, state variables for the encoder and the
decoder must be initialized respectively by g722_reset_encoder and g722_reset_decoder.
It should be noted that encoder and decoder need individual state variables to work prop-
erly.

In the following part a summary of calls to the three entry functions is found.

8.2.1 g722_encode

Syntax:

#include "g722.h"
void g722_encode (short *inp_buf, short *¢722_frame, long smpno,
g722_state *g722_encode) ;

Prototype: g722.h
Description:

Simulation of the ITU-T G.722 64 kbit/s encoder. Takes the linear (16-bit, left-justified)
input array of shorts inp_buf (16 bit, right-justified, without sign extension) with smpno
samples, and saves the encoded bit-stream in the array of shorts ¢722_frame.

The state variables are saved in the structure pointed by ¢722_encode, and the reset can
be stablished by making a call to g722_reset_encoder.

Variables:

mp_buf Is the input samples’ buffer with smpno left-justified 16-bit
linear short speech samples.

g722_frame Is the encoded samples’ buffer; each short sample will contain
the encoded parameters as right-justified 8-bit samples.

SMPNoO ... Is a long with the number of samples to be encoded from the
input buffer inp_buf.

g722_encode. A pointer to the state variable structure; all the variables here

are for internal use of the G.722 algorithm, and should not be
changed by the user. Fields of this structure are described
above.

Version: February 25, 2001

Return value:

115

Returns the number of speech samples encoded.

8.2.2 g722 decode

Syntax:

#include "g722.h"
void g722_decode (short

*9722_frame, short *out_buf, int mode, long

smpno, g722_state *¢722_decoder,) ;

Prototype: g722.h

Description:

Simulation of the ITU-T 64 kbit/s G.722 decoder. Reconstructs a linear (16-bit, left-
justified) array of shorts inp_buf (16 bit, right-justified, without sign extension) with
smpno samples from the encoded bit-stream in the array of shorts ¢722_frame.

The state variables are save

d in the structure pointed by ¢722_decoder, and the reset can

be stablished by making a call to ¢722_reset_decoder.

Variables:
9722 _frame

out_buf ...

mode ...

SMPNO

9722 decoder.............

Return value:

Returns the number of spee

8.2.3 gr722 reset_en

Syntax:

Is the encoded samples’ buffer; each short sample will contain
the encoded parameters as right-justified 8-bit samples.

Is the output samples’ buffer with smpno left-justified 16-bit
linear short speech samples.

Is an int which indicates the operation mode for the G.722
decoder. If equal to 1, the decoder will operate at 64 kbit/s.
If equal to 2, the decoder will operate at 56 kbit/s, discarding
the least significant bit of the lower-band ADPCM. If equal
to 3, the decoder will discard the two least significant bits of
the lower band ADPCM, being equivalent to the 48 kbit/s
operation of the G.722 algorithm. It should be noted that,
for this implementation of the G.722 algorithm, mode 1-bis is
identical to mode 2, and mode 3-bis is identical to mode 3.
Is a long with the number of samples in the input encoded
sample buffer g722_frame to be decoded.

A pointer to the state variable structure; all the variables here
are for internal use of the G.722 algorithm, and should not be
changed by the user. Fields of this structure are described
above.

ch samples encoded.

coder

116 ITU-T Software Tool Library, release 2000

#include "g722.h"
void g722 reset_encoder (g722_state *¢722_encoder) ;

Prototype: g722.h
Description:

Initializes the state variables for the (G.722 encoder or decoder. Coder and decoder require
each a different state variable.

Variables:

g722_encoder............. A pointer to the G.722 encoder state variable structure which
is to be initialized.

Return value: None.

8.2.4 gT722 reset_decoder

Syntax:

#include "g722.h"
void g722_reset_decoder (g722_state *¢722_decoder) ;

Prototype: g722.h
Description:

Initializes the state variables for the G.722 decoder. Coder and decoder require each a
different state variable.

Variables:

9722 _decoder: A pointer to the G.722 decoder state variable structure which
is to be initialized.

Return value: None.

8.3 Portability and compliance

The portability test for these routines has been done using the test sequences designed
by the ITU-T for the G.722 algorithm (available from the ITU sales department). It
should be noted that the G.722 test sequences are not designed to test the QMF filters,
but only to exercise the upper and lower band encoder and decoder ADPCM algorithms.
Therefore, testing of the codec with the test sequences was done with a special set of test
programs that used the core G.722 upper- and lower-band ADPCM coding and decoding
functions. All test sequences were correctly processed.

This module has been tested in VAX/VMS with VAX-C, in the PC with Turbo C++ v1.0
(16-bit mode) and GNU-C (32-bit mode), in the Unix environment in a Sun workstation
with cc, and in HP with gcc.

Version: February 25, 2001 117

8.4 Example code

8.4.1 Description of the demonstration programs

One demonstration program is provided for the G.722 module, g722demo.c. In addition,
two programs are provided in the distribution when compliance testing of the encoder
and decoder is necessary, tstcg722.c and tstdg722.c?.

Program g722demo . c accepts 16-bit, linear PCM samples sampled at 16 kHz as encoder
input. The decoder also produces files in the same format. The bitstream signals out
of the encoder are always organized in 16-bit, right-justified words that use the lower 8
bits (i.e., 64 kbit/s). According to the user-specified mode, the decoder will decode the
G.722-encoded bitstream using 64, 56, or 48 kbit/s (i.e. full 8 bits, discard 1 bit of the
lower band, or discard 2 bits of the lower band).

8.4.2 Simple example

The following C code gives an example of G.722 coding and decoding using as input
wideband speech which is encoded and decoded at either 64, 56, or 48 kbit/s, according
to the user-specified parameter mode.

#include <stdio.h>
#include "ugstdemo.h"
#include "g722.h"
#define BLK_LEN 256

void main(argc, argv)

int argc;
char *xargv[];
{
gr22_state encoder_state, decoder_state;
int mode;
char FileIn[180], FileOut[180];
short smpno, tmp_buf [BLK_LEN], inp_buf [BLK_LEN], out_buf [BLK_LEN];
FILE *Fi, *Fo;

/* Get parameters for processing */

GET_PAR_S(1, "_Input File: " Fileln);
GET_PAR_S(2, "_Output File: " FileOut);
GET_PAR_TI(3, "_Mode: ..''viriiiieennennnnnn " mode);

/* Initialize state structures */
g722_reset_encoder (&encoder_state) ;
g722_reset_decoder (&decoder_state) ;

/* Opening input and output 16-bit linear PCM speech files */

2The demonstration program g722demo.c cannot be used for compliance verification because the test
vectors for G.722 do not foresee processing through the quadrature mirror filters.

118 ITU-T Software Tool Library, release 2000

Fi
Fo

fopen(FileIn, RB);
fopen(FileOut, WB);

/* File processing */
while (fread(inp_buf, BLK_LEN, sizeof(short), Fi) == BLK_LEN)
{
/* Encode input samples in blocks of length BLK_LEN */
smpno = g722_encode (inp_buf, tmp_buf, BLK_LEN, &encoder_state);

/* Decode G.722-coded samples in blocks of length BLK_LEN */
smpno = g722_decode (tmp_buf, out_buf, mode, smpno, &decoder_state);

/* Write 16-bit linear PCM output decoded samples */
furite(out_buf, smpno, sizeof(short), Fo);

/* Close input and output files */
fclose(Fi); fclose(Fo);
}

Chapter 9

RPE-LTP: The full-rate GSM codec

In 1988, the Groupe Special Mobile of the Conference Europeéne des Postes et Telecom-
munications (CEPT) approved the first generation of a pan-European digital cellular radio
system operating at a net rate of 13 kbit/s'. Its speech coding algorithm, the RPE-LTP
(Regular Pulse Excitation, Long Term Predictor) was a compromise solution of the two
best coders at that stage. The full-rate GSM system started operation in the beginning
of 1992 in some European countries and its expansion is expected in a mid-term. This
coder, despite not being an ITU-T standard, is relevant for standardization studies when
scenarios involving tandeming conditions between the PSTN and the European cellular
system need to be studied.

The current version of the STL includes a RPE-LTP implementation based on a freely
available implementation originally produced at the Technical Institue of the University
of Berlin, for a Unix environment. This code has been adapted, corrected to work on
several platforms, and tested with the recommended test vectors, all properly processed.

Details on the algorithm can be found in several references [39, 40, 41], besides the Rec-
ommendation itself [42].

9.1 Description of the 13 kbit/s RPE-LTP algorithm

The RPE-LTP is a frame based coder, encoding 20 ms frames of input data at a time.
The encoder converts each 160 sample frame (8 kHz sampling rate, 13 bits uniform PCM
format) into a bitstream frame of 260 bits. The decoder uses the 260 bitstream bits to
generate a frame of 160 reconstructed speech samples.

9.1.1 RPE-LTP Encoder

A simplified block diagram of the RPE-LTP encoder [42] is shown in figure 9.1.

!The GSM standard developed initially under the responsability of the CEPT was later transferred
to the European Standardisation Telecommunications Institute (ETSI), and the acronym GSM had its
meaning changed to Global System for Mobile Communications. Currently, the GSM specifications are
being maintained by the Third Generation Partnership Project, 3GPP (www.3gpp.org).

119

120 ITU-T Software Tool Library, release 2000

Short term
L PC_ Reflection Coefficients
analysis coded as L og-Area Ratios
(36 bits each 20 ms)
v RPE parameters L>
Input Pre- Shog te_rm @ @ S;E gnd (47 bits each 5 ms) o (6)
- Processing analys's ecti on > ux
Signal filter — and coding
©)]
\ 4
Long term (@ (5) RPE grid
i anaysis decoding and
(1) Short term residual i positioning
(2) Long—term residual (40 samples) filter
(3) Short-term residual estimate (40 samples) A
(4) Reconstructed shirt—term residual (40 samples)
(5) Quantized long term residual (40 samples) LTP parameters
(6) Bitstream to the decoder LTP (9 bitseach 5 ms)
= .
analysis

Figure 9.1: Simplified block diagram of the RPE-LTP encoder.

The input speech frame, consisting of 160 uniform 13 bits PCM signal samples, is first
pre-processed to produce an offset-free signal, which is then subjected to a first-order pre-
emphasis filter. The 160 samples obtained are then analyzed to determine the coefficients
for the short-term analysis filter (LPC analysis). Using these coefficients for the filtering
of the same 160 samples produce the 160 samples of the short-term residual signal. The
filter parameters are represented as reflection coefficients which are transformed to log-
area ratios (LARs) before transmission.

For the following operations, the speech frame is divided into 4 sub-blocks consisting each
of 40 samples. Before the processing of each sub-block, the parameters of the long-term
analysis filter, the LTP lag and the LTP gain, are estimated and updated in the LTP
analysis block. Estimation and update is performed on the basis of the signal in the
current sub-block and a stored sequence of the 120 previously reconstructed short-term
residual samples.

A block of 40 long-term residual signal samples is obtained by subtracting 40 estimates of
the short-term residual from the short-term residual signal itself. The resulting block is
fed to the Regular Pulse Excitation (RPE) analysis which performs the basic compression
function.

As a result of the RPE-analysis, the block of 40 input long-term residual samples is
represented by one of 4 candidate sub-sequences of 13 pulses each. The subsequence
selected is identified by the RPE grid position. The 13 RPE pulses are encoded using
Adaptive Pulse Code Modulation (APCM) with estimation of the sub-block amplitude
which is transmitted to the decoder as side information. The RPE parameters are also
fed to a local RPE decoding and reconstruction module which produces a block of 40
samples of the quantized version of the long-term residual signal. By adding these 40
quantized samples of the long-term residual to the previously obtained block of short-
term residual signal estimates, a reconstructed version of the current short-term residual
signal is obtained. The block of reconstructed short-term residual signal samples is then
fed to the long-term analysis filter which produces the new block of 40 short-term residual

Version: February 25, 2001 121

Reflection Coefficients
coded as Log—Area Ratios
(36 bits each 20 ms)
RPE grid Short term Post— Output
— decoding and /} synthesis Processing o
From| % |gpe positioning filter Signdl
> § parameters
encoder (47 bits each 5 ms) Long term
synthesis
filter
LTP parameters
(9 bitseach 5 ms)

Figure 9.2: Simplified block diagram of the RPE-LTP decoder.

signal estimates to be used for the next sub-block thereby completing the feedback loop.

9.1.2 RPE-LTP Decoder

The simplified block diagram of the RPE-LTP decoder [42] is shown in figure 9.2.

The decoder includes the same structure as the feed-back loop of the encoder. In error-
free transmission, the output of this stage will be the reconstructed short-term residual
samples. These samples are then applied to the short-term synthesis filter followed by the
de-emphasis filter resulting in the reconstructed speech signal samples.

9.2 Implementation

This implementation of the RPE-LTP algorithm is composed of several source files. The
interface routines are in rpeltp.c, with prototypes in rpeltp.h.

Originally written to be a device driver in Unix (known as toast), its interface was adapted
to the specifications of the ITU-T STL, and modified to operate correctly in a variety of
platforms, like VAX, IBM PC compatibles, and Unix workstations (Sun and HP).

The problem of storing the state variables was solved by defining a structure containing all
the necessary variables, defining a new type called gsm, which is a pointer to a structure.
By means of this approach, several streams may be processed in parallel, provided that
one structure is assigned (and that one call to the encoding/decoding routines is done)
for each data stream (this can be advantageous for machines with support for parallel
processing). The RPE-LTP state structure has the following fields (all except L_z2 and
mp are short, which are long and int, respectively):

dp0 Memory of 280 past samples
z1 DC-offset removal filter memory
L_22 DC-offset removal filter parameter.

mp Preemphasis

122 ITU-T Software Tool Library, release 2000

u Eighth-order short term LPC analysis coefficients

LARpp Log Area Ratio array

J Index

nrp Long-term synthesis parameter

v Ninth order short-term synthesis vector

msr Post-processing parameter

verbose Flag used only if compiled with NDEBUG==0

fast Enables fast but inaccurate computation. Does not properly

process the test sequences with this mode turned on.

Table 9.1 presents the RPE-LTP encoder output parameters in order of occurence, with
parameters defined in [42]. It should be noted that the bitstream file generated by the STL
implementation of the RPE-LTP algorithm uses an unpacked format, as other codecs in
the STL. Therefore, each of the 76 parameters indicated in table 9.1 occupy an unsigned,
right-adjusted 16-bit word. Unlikely to the G.711 and G.726 algorithms, however, the
number of significant bits per bitstream parameter is not the same for all the parameters,
as can be seen from the table. An important implication is that the STL bit error inser-
tion routines cannot be applied directly to the bitstream generated by the STL RPE-LTP
encoder. This limitation is not a function of the EID module itself, but of the serial-
ization and parallelization (S/P) routines serialize_* and parallize_* implemented in
the Utility module, which are able only to handle bitstreams that have the same number
of valid bits per sample. Solution to this problem still needs to be implemented in the
STL. It should be noted however that, since the full-rate GSM channel coding is not im-
plemented in the STL, bit error insertion directly in the unprotected RPE-LTP bitstream
will generally not be used. Should the user need bit error insertion in the unprotected
RPE-LTP bitstream, there are two possible solutions:

e it will be necessary to pack the bits for each parameter in such a way that, as seen by
the S/P routines, each sample in the packed bitstream will have a constant number
of valid bits per bitstream sample. Since there are 260 (4 x 5 x 13) bits for each
frame, possible combinations are packed bitstreams with 65 16-bit words, of which
the lower 4 bits are meaningful, or with 20 16-bit words, of which the lower 13 bits
are meaningful. The former is preferred, despite the longer files generated.

e the user may modify the demonstration program to generate or accept (depending
on whether it is an encoding or decoding operation) a serial bitstream format, as
understood by the EID module, instead of a parallel bitstream format.

From the users’ perspective, the encoding function is rpeltp_encode, and the decoding
function is rpeltp_decode. Before using these functions, the state variable for either
the encoder or the decoder must be initialized by rpeltp_init. It should be noted
that encoder and decoder need individual state variables to work properly. After all the
processing is performed, the memory allocated for the state variables can be freed by

calling rpeltp_delete. The following sub-sections describe these four entry functions for
the STL RPE-LTP module.

Version: February 25, 2001 123

Table 9.1: RPE-LTP bitstream format for each 20 ms speech frame.

Parameter Parameter | Number
Number of Bits
LARI1 1 6
LAR2 2 6
LAR3 3)
LAR4 4 5
LARS 5 4
LARG6 6 4
LART 7 3
LARS 8 3
Sub-frame No. 1
LTP lag 9 7
LTP gain 10 2
RPE grid position 11 2
Block amplitude 12 6
RPE-pulse no. 1 13 3
RPE-pulse no. 13 25 3
Sub-frame No. 2
LTP lag 26 7
LTP gain 27 2
RPE grid position 28 2
Block amplitude 29 6
RPE-pulse no. 1 30 3
RPE-pulse no. 13 42 3
Sub-frame No. 3
LTP lag 43 7
LTP gain 44 2
RPE grid position 45 2
Block amplitude 46 6
RPE-pulse no. 1 47 3
RPE-pulse no. 13 59 3
Sub-frame No. 4
LTP lag 60 7
LTP gain 61 2
RPE grid position 62 2
Block amplitude 63 6
RPE-pulse no. 1 64 3
RPE-pulse no. 13 76 3

124 ITU-T Software Tool Library, release 2000

9.2.1 rpeltp_encode

Syntax:

#include "rpeltp.h"
void rpeltp_encode (gsm rpe_state, short *inp_buf, short *rpe_frame);

Prototype: rpeltp.h
Description:

Simulation of the GSM full-rate RPE-LTP encoder. The 16-bit, left-justified linear-PCM
input array of shortsamples inp_buf are processed by the RPE-LTP encoder and the
encoded bit-stream is returned in the right-justified array of shortsamples rpe_frame,
with one sample for each encoded parameter. The input frame has 160 samples and the
encoded frame has 76 samples.

The state variables are saved in the structure pointed by rpe_state, previously initialized by
a call to rpeltp_init (). The reset can be stablished by making a call to rpeltp_init ().

Variables:

rpe_state A pointer to the state variable structure. All the variables
here are for internal use of the RPE-LTP algorithm and should
not be changed by the user. Fields of this structure are de-
scribed above.

mp_buf Is the linear-PCM input sample buffer which must have 160
left-justified 16-bit linear-PCM shortsamples. Only the 13
MSb are used.

rpe_frame Is the encoded sample buffer. Each shortsample will contain
the encoded parameters as right-justified samples. The actual
number of significant bits per sample will depend on each
parameter.

Return value: None.

9.2.2 rpeltp_decode

Syntax:

#include "rpeltp.h"
void rpeltp_decode (gsm rpe_state, short *rpe_frame, short *out_buf);

Prototype: rpeltp.h
Description:

Simulation of the GSM full-rate RPE-LTP decoder. The encoded bit-stream in the input
array of right-justified shortsamples rpe_frame is used to reconstruct a block of the speech
signal using the RPE-LTP decoder. The reconstructed speech block is returned in the
16-bit, left-justified linear-PCM output array of shortsamples inp_buf. The input frame
has 76 samples and the decoded frame has 160 samples.

The state variables are saved in the structure pointed by rpe_state, previously initialized

Version: February 25, 2001 125

by a call to rpeltp_init (). The reset can be established by calling rpeltp_init ().

Variables:

rpe_state A pointer to the state variable structure. All the variables
here are for internal use of the RPE-LTP algorithm and should
not be changed by the user. Fields of this structure are de-
scribed above.

rpe_frame, Is the encoded sample buffer, which must have 76 right-justified
shortsamples. The actual number of bits per sample will de-
pend on each parameter.

out_buf ... Is the output samples buffer, which will contain 160 left-
justified, 13-bit linear-PCM shortsamples. The three LSbs
are set to zero.

Return value: None.

9.2.3 rpeltp_init

Syntax:

#include '"rpeltp.h"
gsm rpeltp_init (void);

Prototype: rpeltp.h
Description:

Initializes the state variables for the RPE-LTP encoder or decoder. Combined coder and
decoder operation requires a different state variable for the encoding and the decodeing
part.

Variables: None.
Return value:

A pointer to an initialized state variable structure defined by the type gsm. Returns NULL
in case of failure.

9.2.4 rpeltp.delete

Syntax:

#include '"rpeltp.h"
void rpeltp_init (gsm rpe_state);

Prototype: rpeltp.h
Description:
Releases memory allocated to a state variable previously initialized by rpeltp_init().

Variables:

rpe_state ..., A pointer to a previously initialized RPE-LTP state variable
structure.

126 ITU-T Software Tool Library, release 2000

Return value:

None.

9.3 Portability and compliance

The portability test for these routines has been done using the test sequences designed
by the GSM for the RPE-LTP (available from ETSI), which were also used to verify
the compliance of the encoding and decoding function to the full-rate GSM voice codec
Recommendation [42, Annex C].

This routine has been tested in VAX/VMS with VAX-C and gcc, in the PC with Borland C
v3.0 (16-bit mode) and gce (32-bit mode). In the Unix environment in a Sun workstation
with cc, acc, and gee, and in HP with gee. In all tested cases, 100% of the test sequences
passed when the following symbols were defined at compilation time: SASR, USE_FLOAT_MUL
and NDEBUG. The symbol FAST must not be defined for perfomance compliant with the
GSM 06.10 Recommendation, while USE_FLOAT_MUL must be defined at compilation time.
The symbol NeedFunctionPrototypes must be undefined for pre-ANSI-C compilers (e.g.
SunOS cc compiler).

9.4 Example code

9.4.1 Description of the demonstration program

One program is provided as demonstration program for the RPE-LTP module, rpedemo.c.

Program rpedemo . c accepts input files in either 16-bit linear PCM format, 16-bit, right-
justified A-law format, or 16-bit, right-justified pu-law format for the encoding operation.
The output of the decoder can also be in any of these formats, but it will have the same
format as the encoding operation if encoding and decoding is performed in a single pass
(default). If the encoding and decoding operations are performed in separate steps, the
format of the output signal does not need to match the format of the original linear PCM
signal. The encoder output and decoder input are signals in 16-bit, right-justified samples,
as described before in Sections 9.2.1 and 9.2.2. Three operations are possible: encode and
decode in a single pass (default), encode-only (option -enc), or decode-only (option -dec).

9.4.2 Simple example

The following C code gives an example of RPE-LTP coding and decoding using as input
13-bit, linear-PCM speech samples, which are encoded and decoded at 13 kbit/s.

#include <stdio.h>
#include "ugstdemo.h"
#include "rpeltp.h"

Version: February 25, 2001 127

#define BLK_LEN 160

int main(argc, argv)

int argc;
char xargv[];
{
gsm encoder_state, decoder_state;
char FileIn[180], FileOut[180];
short bs_buf [BLK_LEN], inp_buf[BLK_LEN], out_buf[BLK_LEN];
FILE *Fi, *Fo;

/* Get parameters for processing */
GET_PAR_S(1, "_Input File: ", FilelIn);
GET_PAR_S(2, "_QOutput File: " FileOut);

/* Initialize state structures */
rpeltp_init();
rpeltp_init();

encoder_state
decoder_state

/* Opening input and output LOG-PCM files */
Fi = fopen(FileIn, RB);
Fo = fopen(FileOut, WB);

/* File processing */
reset = 1; /* set reset flag as YES */
while (fread(inp_buf, BLK_LEN, sizeof(short), Fi) == BLK_LEN)
{
/* Encode input linear PCM samples */
rpeltp_encode(encoder_state, inp_buf, bs_buf, BLK_LEN);

/* Decode samples */
rpeltp_decode(decoder_state, bs_buf, out_buf);

/* Write decoded samples */
fwrite(out_buf, BLK_LEN, sizeof(short), Fo);

if (reset)
reset = 0; /* set reset flag as NOMORE */

/* Free memory */
rpe_delete(decoder_state);
rpe_delete(encoder_state);

/* Close input and output files */
fclose(Fi);

fclose(Fo);

return O;

128 ITU-T Software Tool Library, release 2000

Chapter 10

Duo-MNRU: The Dual-mode
Modulated Noise Reference Unit

For evaluation of the quality of a system or equipment, it is important to express the
quality measure in a unit suitable for comparison with other reference (or well-known)
equipments and systems. A common way of representing these figures is by means of rela-
tive units, where the quality is expressed by means of a unique figure, in a unidimensional
scale.

But it is insuficient to be unidimensional; the scale must be inequivocal, with a universal
meaning. As an example, the ACR scale (Absolute Category Rating, [43, Annex B]),
which is a scale used for listening opinion tests and has five points termed FEzcellent,
Good, Fair, Poor, and Bad, is inadequate: besides it shows a continuum of quality points,
the meaning of the adjectives are far from universal, varying from language to language,
and from person to person. Exchange of information on the performance of these systems
and equipments is easier and more consistent with more objective measures. The issue of
how the MNRU is to be used as a reference system in subjective tests has been studied
in ITU-T Study Group 12, which is described in ITU-T Recommendation P.830 [7] in its
Sections 8.2.2 and 11.

The Modulated Noise Reference Unity (MNRU) was introduced as a means to controlled
degradations that are representative of the non-linear distortion introduced by waveform
coding techniques. Initially aiming at evaluating the quality of log-PCM waveform coding
systems, it has been used in the process of generating several ITU-T standards, such as

the ITU-T G.726 (32 kbit/s), G.722, G.728, and G.729.

The concept of such reference unit was published in [44]. The first system aimed at was
the PCM coding with logarithmic compression (today world-wide available by means of
the G.711 Recommendation), whose main characteristic is to have a considerably uniform
signal-to-noise ratio (SNR) over a wide range of amplitudes. Moreover, the quantizing
noise is correlated to the signal: if no signal is present, no quantization noise is produced?,
and large signals will produce more quantization noise than small ones. Therefore, the
main characteristic of this reference unit should output speech corrupted by a speech-

! This is obviously academic, because always there will be idle noise, among others, in the absence of
an input signal.

129

130 ITU-T Software Tool Library, release 2000

correlated noise.

X(K) —=

o P

removal N = y(k)
X X)
Gaussian Y

Noise n(k) Gy

Figure 10.1: Block diagram of the “digital” MNRU. The bandwidth of the output filter
h(k) is 0-3400 Hz for the narrowband case, and 0-7000 Hz for the wideband case.

In [44], the speech-correlated noise generation was based on a double-balanced ring mod-
ulator, controlled by the input speech signal, which modulates a noise carrier generated
by a noise generator having a relatively uniform energy distribution, there in the range of
0—20kHz. This correlated noise is then added to the input signal, with gains applied such
that a controlled signal-to-noise ratio is obtained in the output, after the 300-3400Hz
band-limiting filter.

With the 1996 revision of the MNRU description published in ITU-T Recommendation
P.8102, specific guidelines were given for “digital implementations”?, eliminating many of
the ambiguities possible in earlier descriptions [45], as explained in the STL92 manual [46,

Chapter 8]. Also, this implementation allows for transparent operation on narrowband or
wideband speech, hence being known as Dual-mode MNRU, or “Duo-MNRU?”, for short.

10.1 Description of the Algorithm

The de-facto reference implementation of the MNRU* is the same of the original descrip-
tion, whose specification can be found in ITU-T Recommendation P.810 [47] (formerly
ITU-T Recommendation P.81 [45]). This Recommendation describes two MNRU schemes,
one called Narrow-band MNRU, and the other, Wideband MNRU. The latter is applicable
to systems where wideband speech (70-7000Hz) is expected, whereas the former is for

2Formerly known as ITU-T Recommendation P.81.

3The revised P.81 define a “digital implementation” either as a digital hardware implementation or
as a software implementation of the MNRU.

“Developed by the British Telecom and licenced to Malden Electronics.

Version: February 25, 2001 131

telephone bandwidth (300-3400Hz). Both the narrowband and the wideband MNRU are
implemented in this version of the ITU-T Software Tools Library.

The basic block diagram of the P.810 MNRU is found in figure 10.1. In summary, there
are two paths, one called signal path, another called noise path. In the noise path, gaussian
noise (uniform in a range at least the cutoff frequency of the low-pass filter in the output
of the MNRU) is modulated by the incoming signal. The result is then added with the
output from the signal path. The gains are set such that the gain (in dB) applied in the
output of the noise path is the signal-to-correlated-noise ratio (), in the output of the
band-pass filter, as calculated in the section to follow.

In analytical terms, the signal corrupted by the modulated noise y(k) is
y(k) = (Gsx(k) + Gpr(k)n(k)) * h(k)

where Gy is the gain of the signal path, G,, is the gain of the noise path, z(k) is the input
signal, and n(k) is the gaussian noise signal; the symbol * means convolution, and h(k)
is the band-pass filter.

If we suppose that the band-pass filter has |H(f)| = 1 in its pass band, and calling @) the
signal-to-noise-ratio (SNR) at its output, we may write:

of _E[E(k)] _ GIE[z*(k)]

o, EW*(k)] GLE[x2(k)n*(k)]

v

109/10 =
But x and n are uncorrelated, and the noise is gaussian with mean 0 and variance 1

(N(0,1)):
o () e (5
- \G,/) o202 \G,

T

or

Q = Fs + Fn
Iy = 20 lOglU(Gs)
[, = —20log,,(Gy)

If we set Ty = 0 (G, = 1), Q is exactly T',, (or, G, = 1079/?%), i.e., the SNR is the gain
(in dB) of the noise path and the previous expression may be written as:

y(k) = [2(n) + 10792 (k)n(k)] * h(k)
or approximately
y(k) = x(k) + 1092 a(k)n(k)
in the passband region of H(f)|.

When both GG and G, are non-zero, the MNRU is in an operational mode normally called
Modulated-noise mode. This is the most common operation mode.

Alternatively, if one consider Gy = 0, the output of the algorithm is only the correlated
noise, at a level () dB below the input signal. This is Noise-only mode.

If, on the other hand, G,, = 0, the output of the algorithm is the input signal filtered by
h(k), with a gain Gj; this is the Signal-only mode.

132 ITU-T Software Tool Library, release 2000
10.2 Implementation

This implementation of the MNRU algorithm can be found in the module mnru.c, with
prototypes in maru.h. A thorough characterization of this module is presented in [48].
The previous version of the I'TU-T STL MNRU was applicable to narrowband signals and
evolved from a Fortran implementation which had been used by several laboratories, espe-
cially by participants of ETSI’s contest for the second generation of Digital Mobile Radio
Systems, and was originally written by experts at CSELT/Italy (sometimes referred as
CSELT MNRU), an implementation fully compliant with the narrowband MNRU speci-
fication available in the then-in-force P.81 [45].

With the revision of MNRU specification, several changes had to be made to the STL92
MNRU:

e The need for an upsampling by a factor of 5 before summation of the modulated
noise to the input speech was eliminated because now for digital implementations,
the bandwidth of the multiplicative noise shall have the bandwidth of the input
signal. In the previous version, the noise bandwidth had to be 20 kHz.

e The output filter for digital implementations shall be a low-pass filter, instead of
the bandpass filter of the previous version of the MNRU

e The need of an input speech DC-component removal filter was added to the speci-
fication.

These changes, especially the elimination of the 5:1 speech data rate conversion, allowed
for the implementation of both the narrowband and the wideband MNRU within the same
C function, when the output filter is adequately designed [48, pp.7-12].

The random number generator (RNG) algorithm was also modified to allow for real-time
implementations, and the solution adopted was based on Aachen University’s approach
used by the Host Laboratory for the ITU-T G.729 Selection Tests.

The block diagram of the MNRU implemented in the STL96 is in figure 10.2.

The MNRU works internally on a sample-by-sample basis but for ease of interface with
other speech coding functions, access to it is made on a sample block basis. It should be
noted however that the filters have memory, as well as do the random number generator,
hence state variables are needed. These state variables have been arranged as fields of a
structure whose type name is MNRU_state. The fields of the structure are:

seed RNG’s seed

signal_gain Gain of the signal path

noise_gain Gain of the noise path

vet Array for intermediate data

last_zk z(k — 1) used as memory for the DC-removal filter

last_yk €(k — 1) (see figure 10.2), used as memory for the DC-
removal filter

DLY[2][2] Memory of delayed samples for two second-order stages

(first index) for first- and second-order delays (second
index)

Version: February 25, 2001 133

&K
h(k)
DC \
X(K) —={ removal C X (K
(9 (0=0.985) / o y(k)
v B
Table -
(8k) Noise /KT/
— 8 sums
— () n(k) Gy
Figure 10.2: STL MNRU implementation.
Al2][2] Numerator coefficients for the stage indicated by the
first index and delay-order inidcated by the second index
B[2][2] Denominator coefficients for the stage indicated by the
first index and delay-order inidcated by the second index
rnd_state State structure for MNRU’s random number generator.

Detailed description is found in the section on the ran-

dom number generator.
rnd_mode Operational mode of the random number generator

clip Number of samples clipped in the noise-insertion process

The values of the fields shall not be altered by the user.

Filters in the MNRU module

The composite frequency response of both MNRU filters is shown in figure 10.3. Figure
10.5 shows the contribution of the output low-pass filter for (a) the the narrowband and
(b) the wideband cases. Figure 10.4 shows the effect of the input DC-removal filter for
(a) the the narrowband and (b) the wideband operation modes of the MNRU. Details on
the design of the output low-pass filters are given in [48]. The frequency responses have
been obtained by exciting the MNRU module with digital sinewaves and computing the
ratio of input and output signals, in dB.

The input DC-removal filter was implemented using a first-order IIR pole-zero filter de-

fined by
11—zt

1—az !t
with @=0.985. Its 3-dB point is at 16 Hz for the narrowband case and at 38 Hz for the

134 ITU-T Software Tool Library, release 2000

Duo-MNRU response for narrow-band signals

(with DC removal and output low-pass filters)

5.0 [+
0.0 : :
5.0 =
-10.0 | -
-15.0 | \
-20.0 | \
-25.0 | |
-30.0 | |
-35.0 | |
-40.0 | | :
45.0 | \VA\ /*
-50.0 | ;
-55.0 |]
-60.0 (;

Amplitude Response [dB]

500 1000 1500 2000 2500 3000 3500 4000
Frequency [Hz]
(a) Narrowband Duo-MNRU

Duo-MNRU response for wideband signals
6o (with DC removal and output low-pass filters)
00 |
-5.0
-10.0 | \
-15.0 | \
-20.0 | \
-25.0 | |
-30.0 | |
-35.0 | |
-40.0 | | :
450 | \VA\ /*
-50.0 | ;
-55.0 |]
%0 0" 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]
(b) Wideband Duo-MNRU

Amplitude Response [dB]

Figure 10.3: Total frequency response of the Duo-MNRU filters.

Version: February 25, 2001

Amplitude Response [dB]

Amplitude Response [dB]

-20.0 | /
-25.0 |

-30.0 ©

-10.0 ¢

-15.0 | /
-20.0 | /
-25.0 |

-30.0 L

Narrow Band MNRU DC Removal Filter

(a=0.985)
10.0 ——
5.0 f
0.0 | e g
R R B B e oo SRR BN I
5.0 [3 dB point /
-10.0 |

15.0 | */

05101520253035404550
Frequency [Hz]
(a) Narrowband Duo-MNRU
Wideband MNRU DC Removal Filter
(0=0.985)

10.0 [~
5.0 |
0.0 1 R ———

N R R N e oss S NS]
5.0 r -3 dB point / 1

0 10 20 30 40 50 60 70 80 90 100
Frequency [Hz]

(b) Wideband Duo-MNRU

Figure 10.4: DC removal filter for the Duo-MNRU.

135

136 ITU-T Software Tool Library, release 2000

Duo-MNRU for narrow-band signals

(output low-pass filter)

50
0.0 I ,,,,,E’f}jqask 1
-
=
g | P.81mask
c -5.0
o
> /
Q Response
o
o I
5 -100
=] I
S
<
-15.0
3300 3350 3400 3450 3500 3550 3600
Frequency [Hz]
(a) Narrowband Duo-MNRU
Duo-MNRU response for wideband signals
(with DC removal and output low-pass filters)
3
0.0
)
S,
S’) L
c -5.0
o L
Q.
(%]
(O]
o
o I
g -10.0
=1 I
S
<
-15.0
#2000 o o i o
6600 6700 6800 6900 7000 7100 7200

Frequency [Hz]
(b) Wideband Duo-MNRU

Figure 10.5: Output low-pass filter for the Duo-MNRU.

Version: February 25, 2001 137

ki
1 H{(1
x;(K) o (3 o Yi(K)

H?(3) H''(0)
Hi @)

1 H' @)
HY (3 H' (0)

N 71
HY(2)

Figure 10.6: MNRU Filters Structure.

wideband case.

The output low-pass filter was implemented using a second-order cascade-form IIR filter
with two-sections as illustrated in figure 10.6 and defined by the equation:

2 _ _
Aok, + Q12 1 + Qo2 2

k=1 1+ blszl + b2k272

IIR filters were chosen because of their low computational complexity when compared to
FIR implementations, allowing for a more efficient MNRU implementation.

Random Number Generator for the MNRU module

The random number generator (RNG) used in this implementation was chosen using the
following criteria:

e the desired value for Q,)4, and the measured Q, @),,, should be
very close for a wide range of Q, e.g., Q from 0 to 50 dB.

e it should show a good approximation of a gaussian distribution.
This is needed because it is specified in P.810 and more importantly
because uniform distributions do not allow good matching between
the desired and measured values of Q).

e the algorithm needed to be portable (i.e., identical results are got
in different platforms if the same seed is given).

The RNG chosen to be used in the STL92 version of the MNRU was based on Knuth’s
Subtractive Method [49],[17, Parts 3.2-3.3|, which generates adequate random sequences
but is computationally intensive and was too complex to be implemented in a real-time

138 ITU-T Software Tool Library, release 2000

digital hardware MNRU.

The implementation used in the ITU-T G.729 8 kbit/s speech codec selection tests was
based on a gaussian-noise table lookup, in a manner similar to Malden Electronic’s MNRU
implementation.> This approach is considerably less computationally intensive than the
STL92 approach, and was used to further reduce the complexity of the MNRU implemen-
tation.

After several experiments [48], a table with 8192 gaussian samples was chosen to be used,
which is randomly and uniformly accessed 8 times (i.e., an eight-time sample accumu-
lation) to be used by the MNRU algorithm. The gaussian table itself is generated in
run-time (rather than being stored in the data memory of the source or object code)
using the Monte-Carlo substitution algorithm. The Monte-Carlo algorithm uses a linear
congruential generation (LCG) algorithm defined by

I; =690691;_1 +1 (mod 2%)

which is converted to numbers in the range [0..1] using the upper 24 bits of the 32-bit
unsigned long I;. Iy is a fixed seed equal to 314159265. This algorithm is used to generate
the necessary initial random samples for the substitution algorithm.

Once the table has been filled, during the normal operation of the MNRU, eight successive
samples are drawn (uniformily) from the table using a different LCG algorithm

L;=253L; 1 +1 (mod 2*")

of which the upper 13 bits are used to generate random numbers uniformly distributed
between 0 and 8191. L is a fixed seed equal to 12345. Both LCGs were implemented as
in Aachen University’s MNRU implementation.

Since different ranges are necessary for table filling and for gaussian sample generation, two
different LCG random number generators were used to avoid any additional calculations
due to range convertion and to reduce the software load.

Since the Monte-Carlo RNG is used only at startup time, it is not necessary to keep
any state variables for it. The sample-drawing RNG however needs to keep stored the
previously generated index, which is stored in a structure of type RANDOM_state, whose
only field is (as defined in mnru.h)S:

gauss Index for next random number;

The field in RANDOM_state should not be altered by the user in any situation.
The operational modes are defined in mnru.h:

#define RANDOM_RUN O
#define RANDOM_RESET 1

SMalden’s MNRU uses a ROM table derived from a Gaussian distribution with 4096 samples uni-
formly distributed throughout the table. An address in the table is uniformly sampled four times and
accumulated to form a gaussian noise sample.

6The use of a structure instead of a single variable in the parent structure (MNRU_state) allows for
unimplemented features to be easily added in a later version of the algorithm.

Version: February 25, 2001 139

The noise modulation routine is MNRU_process, which is described next.

10.2.1 MNRU_process

Syntax:

#include "mnru.h"
double *MNRU_process (char operation, MNRU_state *s, float *input, float
*output, long n, long seed, char mode, double Q);

Prototype: mnru.h
Description:

Module for addition of modulated noise to a vector of n samples, according to ITU-T
Recommendation P.810, for either the narrowband or the wideband model. Depending
on the mode, this function:

e adds modulated noise to the input buffer at a SNR level of () dB,
saving to output buffer (mode==MOD_NOISE);

e puts into output only the noise, without addition of the original
signal (mode==NOISE_ONLY);

e produces in the output a filtered-only (no noise added) version of
the ‘input’ samples (mode==SIGNAL_ONLY);

The symbols MOD_NOISE, NOISE ONLY, and SIGNAL_ONLY are defined in mnru.h.

Although the MNRU algorithm operates on a sample-by-sample basis, MNRU_process
handles the input data in blocks of n samples, for better computational efficiency.

The implementation of the MNRU algorithm has three operational states, called MNRU_START,
MNRU_CONTINUE and MNRU_STOP. With MNRU_START, the state variables are set, as well as
memory is allocated for the intermediate data, and this needs to be the first operation
with the algorithm. Differently from the speech voltmeter module, after the initializa-
tion of the state variables, the normal calculations are carried out for the first block of
data. Once reset, the algorithm changes the operation state to MNRU_CONTINUE, and the
next calls to the MNRU algorithm will skip the reset operation. With the last block, it
is adivisable to release the memory allocated to the intermediate data. This is accom-
plished by calling MNRU_process with the operational state set as MNRU_STOP. These three
operational states are defined in mnru.h as follows:

#define MNRU_START 1
#define MNRU_CONTINUE O
#define MNRU_STOP -1

Variables:

operation One of the defined operation status: MNRU_START, MNRU_STOP,
MNRU_CONTINUE.
S A pointer to a MNRU_state structure.

140 ITU-T Software Tool Library, release 2000

mput Pointer to input float-data vector; must represent 8 or 16 kHz
speech samples.

output ... Pointer to output float-data vector; will represent 8 or 16 kHz
speech samples.

N Long with the number of samples (float) in input.

seed ..., Initial value for random number generator.

mode ... Operation mode: MOD_NOISE, SIGNAL ONLY, NOISE ONLY (de-
scription above).

Q Double defining the desired value for the signal-to-modulated-

noise () for the output data.

Please note that new values of seed, mode, and () are considered only when operation is
MNRU_START, because they are considered as INITIAL state values. Therefore, when the
operation is not MNRU_START, they are ignored.

Return value:

Returns a (double *)NULL if not initialized or if initialization failed; returns a (double
*) to an intermediate data vector if reset was successful or is in the MNRU_CONTINUE
(“run”) operation state.

10.3 Portability and compliance

In the development of this module, several steps were taken to assure its compliance to
ITU-T Recommendation P.810, which included:

e agreement of expected and measured Q values for tones and speech,

addition of partial files,

level of output files,

frequency response of built-in filters.

Additionally to these objective measurements, a subjective test was performed. The
results of this test are found in [48], where it was concluded that the new MNRU imple-
mentation conforms to the P.810 and also behaves more closely to the hardware MNRU
than the previous STL92 version.

Additionally to the conformance tests, the algorithm was tested for portability using a
1kHz tone file as input to the algorithm with Q values ranging from 0 to 50 dB in 5 dB
steps, and also for the algorithm in the SIGNAL_ONLY mode. The processed test files were
then compared the the reference processed files (generated on a HP workstation). Test
and reference files should be identical. The algorithm was found to compile and execute
correctly on MS-DOS under Borland Turbo-C++ 1.0 and under the MS-DOS port of the
GNU-C compiler (gcc), on a HP UNIX workstation with cc (non-ANSI) and gee, on a
Sun workstation with cc (non-ANSI) and also on VAX VMS and APX computers.

Version: February 25, 2001 141

10.4 Example code

10.4.1 Description of the demonstration programs

One demonstration program is provided for the MNRU module, mnrudemo.c. Irrespec-
tive of whether the 16-bit, linear PCM input file is sampled at 8 or 16 kHz, program
mnrudemo . ¢ will add the multiplicative noise signal to the input signal at the user-defined
Q@ level and produce as output a 16-bit, linear PCM file. Optionally, the program can
produce a signal-only file (equivalent to a very high Q value) or a noise-only file (the
signal path is disconnected).

10.4.2 Simple example

The following C code gives an example of a possible use of the Duo-MNRU module. The
input file speech is added to a multiplicative noise at a SNR defined by parameter Q. All
samples in the file are processed.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "ugstdemo.h"

#include "mnru.c" /* ... Include MNRU module ... */
#include "ugst-utl.c" /* ... Include of utilities ... */

#define BLK_LEN 256
main(argc, argv)

int argc;
char *xargv([];
{
/* File variables */
char FileIn[80], FileOut[80];
FILE *Fi, *Fo;
MNRU_state state;
short Buf [BLK_LEN] ;
float inp[BLK_LEN], out[BLK_LEN];
double QdB;
long 1;
char MNRU_mode = MOD_NOISE, operation;

/* Read parameters for processing */

GET_PAR_S(1, "_Input File: ", FileIn);
GET_PAR_S(2, "_Output File: ", FileQOut);
GET_PAR_D(3, "_Desired Q: ", QdB);

/* Check for parameter 4 to change MNRU operation mode */
if (argc > 4)
{

MNRU_mode = toupper (argv[5][0]);

142 ITU-T Software Tool Library, release 2000

if (MNRU_mode == ’S’) /* Signal-only mode */
MNRU_mode = SIGNAL_ONLY;

else if (MNRU_mode == ’M’) /* Modulated noise, the default mode */
MNRU_mode = MOD_NOISE;

else if (MNRU_mode == ’N’) /* Noise-only mode */
MNRU_mode = NOISE_ONLY;

else

{

fprintf (stderr, "Bad mode chosen; use M,N,or S \n"); exit(2);
}
}

/* Opening input and output files */
Fi = fopen(FileIn, RB);
Fo = fopen(FileOut, WB);

/* INSERTION OF MODULATED NOISE ACCORDING TO P.810 (FEB.96) x/

/* Set operation as start */
operation = MNRU_START;

/* Process for all samples in file */
while ((1 = fread(Buf, sizeof(short), BLK_LEN, Fi)) !'= NULL)
{
/* Convert data from 16-bit short to normalized float */
sh2f1_16bit((long) 1, Buf, inp, 1);

/* MNRU processing */
MNRU_process(operation, &state, inp, out, 1, 314159265L, MNRU_mode, QdB);

/* Change operation mode: START --> CONTINUE */
if (operation == MNRU_START)
operation = MNRU_CONTINUE;

/* Convert from normalized float to short (hard clip and rounding) */
f12sh_16bit((long) 1, out, Buf, 1);

/* Save data to file */
fwrite(Buf, sizeof(short), 1, Fo);

/* Stop mode: Deallocation of memory, but process O samples */
operation = MNRU_STOP;
MNRU_process (operation, &state, inp, out, OL, OL, O, (double) 0.0);

/* Finalizations */
fclose(Fi);
fclose(Fo);
return(0);

Chapter 11

SVP56: The Speech Voltmeter

11.1 Description of the Algorithm

The specification for the measurement of the active level of speech signals is given in [TU-
T Recommendation P.56 [50], and is commonly referred as speech voltmeter'. Besides
the description above, there is complementary information in the I'TU-T Handbook on
Telephony [51], section on ‘Measurement of Speech’.

In summary, the P.56 algorithm takes samples of a signal in the speech bandwidth and
calculates its active speech level. This means that silence and idle noise are not taken into
account when calculating the level of the signal. Furthermore, structural pauses (pauses
in the range of 250 ms which are inherent to the uterance process) are considered in the
measurements, but grammatical pauses (pauses between phrases or to emphasise words,
generally in the range of 300 ms or more) are excluded, because they do not contribute
to speech subjective loudness [51].

To decide about the activity or inactivity of a speech segment, the algorithm calculates
an envelope waveform, or short-term mean amplitude, such that pauses shorter that 100
ms are not excluded, but pauses longer than 350 ms are?. A signal is considered active
when its short-term mean level (envelope) exceeds a threshold level (or margin of) 15.9
dB below the prevailing speech voltage®, and also during short gaps between such bursts
of activity.

A word of caution must be given here: the above mentioned margin above of 15.9 dB has
been optimized for speech with a low level of background noise. This means that in the
case of generation of material for listening subjective tests, once the original files have been
processed (already level equalized), especially by processes that add significant amount
of noise to the files (e.g. MNRU for low values of @), the P.56 algorithm shall not be
utilized for re-equalization. Since the noise introduced by the processing algorithm will be
far above the threshold discussed, the P.56 algorithm will generate wrong measurements
of the active level and speech activity. A practical way to observe whether the P.56 may

! After the British Telecom and Malden Ltd.’s SV6 Speech Voltmeter.

2Users will perceive a pause when it lasts more than about 350 ms.

3The margin of 15.9 dB has been chosen to be comfortably above the circuit noise, while causing few
false detections or failures to detect, having being determined by subjective experiments.

143

144 ITU-T Software Tool Library, release 2000

be utilized on processed files is to observe the activity factor: if it increases significantly
in relation to the original file’s activity factor, then the use of the P.56 for re-equalizations
should be discarded.

Another operating assumption for the P.56 Recommendation suggests that the input
signal be band-limited (300-3400 Hz for telephony band signals and 100-7000 Hz for
wideband signals), as given in Table 3 and Figure 2 of P.56.

The speech voltmeter algorithm is expressed in terms of discrete operations. Because of
this, a minimum sampling frequency must be chosen, and the specification in P.56 gives
it as 600 Hz. This is well below Nyquist frequency of the digitized sample’s normally used
for telephony applications, either 8000 or 16000 Hz, which is explained by the fact that
the matter of interest here is not signal’s frequency content’s information, but only signal
statistics. This is one of the unspecified details of the P.56 that may cause implementations
to differ.

After considering an input sample z;, the speech voltmeter performs two operations. First,
the total energy of the signal is calculated (sq), updating also the number of samples n
and signal’s (long-term) mean level s. Second, the envelope (or short-term mean level) ¢
of the signal is extracted using a second-order exponential filtering:

pi=g-pi1+(1—g) |z

=9 g1+ (1—g) p

with initial states py = ¢o = 0 and the quantity ¢ defined as:

g =exp(=1/(f-T))

for f as the sampling frequency, in Hz, and T, a time constant for smoothing, equal to
0.030s (30 ms).

With the envelope calculated, the algorithm calculates the number of times that the
envelope exceeds each of the threshold levels. The thresholds are represented in a vector ¢
of B — 1 positions, where B is the resolution (number of bits) of the samples. The values
in this vector range from half the maximum possible amplitude down to (or less than)
one LSB (Least Significant Bit). In terms of practical implementations, the values of ¢;
are a power of 2:

;=21 j=0---B—2
There are three possible cases*:

e the envelope exceeds the threshold c;: increment the activity counter for the
quantization level j, a;, and set the timer vector (or hangover counter) h; to zero.
This operation means that the segment is active as far as the level j is concerned,
and so the hangover counter must be set to zero, as well as the number of active
samples (a;) incremented.

4Tt is interesting to remark that the lower the threshold level, the greater the activity count for that
level will be.

Version: February 25, 2001 145

e the envelope does not exceed the threshold level, but the hangover counter
h; is less (or shorter) than / samples: this means that, besides the sample being
into a pause segment (because the level is below the threshold), it is a structural
pause (because the time spent since the last activity burst is less than 200ms).
Therefore, the action here is to increment the activity counter, as well as the hang-
over counter for the level j.

e the envelope does not exceed the threshold level and the hangover time
exceeds I samples: this means that the sample is into a pause (because the level
is below the threshold); moreover, it is a grammatical pause (because the time spent
since the last activity burst is more than 200ms). Therefore, no increments are done.

Then, after all the samples of interest have been considered, three quantities have been
accumulated:

1. total number of samples, n;
2. signal energy, sq;
3. an activity count a; for each threshold level ¢;, j =0---B — 2.

The active level can be evaluated from these three parameters, as follows. First, the
long-term mean level is calculated:

L = 101logy(sq/n) — 201og(r)
and the activity counter and threshold vectors are converted to dB:
A; =101log;,(sq/a;) — 201og(r)

Cj = 20log;y(c;) —201og(r)
where 7 is the 0 dB reference point for the measurements®.

In sequence, the difference between A; and C} is calculated for each j. When this difference
lyes below the margin M (15.9 dB), then the active level® A is found by interpolating
between this level 7 and level j — 1 (i.e., the nearest level k£ where Ay — Cy > M, what
gives k = j — 1), using a bipartition (binary) interpolation algorithm. There are three
special cases here:

e When) = 0, then the active level is zero;

e When |A4; — C; — M| < § (where § is the the given tolerance, or

degree of accuracy): the active level is A;.

e When |A; — Cj_y — M| < 6: the active level is A; ;.

The tolerance ¢ is not specified in P.56, hence being implementation-dependent.

Once the active level is found, the only remaining point is the calculation of the activity
factor,
Activity = 10474

or, in percents,
Activityy, = 100 - 10574

5This is another unspecified detail in P.56. This implementation’s choice is given in next section.
6The true active level is defined as the one which exceeds the threshold used for its derivation by a
M =159 dB.

146 ITU-T Software Tool Library, release 2000
11.2 Implementation

This implementation of the speech voltmeter algorithm can be found in the module
sv-p56.c, with prototypes in sv-p56.h. This version evolved from a preliminary Fortran
implementation provided by Telebras, Brazil, which was used by several laboratories, in
especial by participants of ETSI’s contest for the second generation of Digital Mobile
Radio Systems.

In Recommendation P.56, there are several undefined issues needed to be resolved for
the implementation of this module. Especially, the rate f used for the averages and the
tolerance, or degree of accuracy, ¢ to be used for the interpolation of the active level have
to be defined. Another undefined parameter is the reference level, or 0 dB reference point
r. The choices of this implementation are shown in the table below:

Speech voltmeter parameters

Parameter Description Value
f sampling rate same rate of the input signal.
T dB reference 0 dBov (see Chapter 2).
J tolerance +0.5 dB (the same of M).

The P.56 algorithm operates on a sample-by-sample basis. However, since most software
implementations use blocks (or frames) of samples, the speech voltmeter was designed to
work with blocks of samples. Measurements are cummulative, therefore state variables are
needed in this approach. These state variables have been arranged as fields of a structure
whose name is SVP56_state. The fields of the structure are’:

f Sampling frequency, in Hz

a[15] Activity count

c[15] Threshold level

hang[15] Hangover count

n Number of samples read since last reset
s Sum of all samples since last reset

sq Squared sum of samples since last reset
P Intermediate quantities

q Envelope

mazx Max absolute value found since last reset
refdB 0 dB reference point, in [dB]

rmsdB RMS value found since last reset

mazP Most positive value since last reset
marN Most negative value since last reset
DClevel Average level since last reset
ActiwityFactor Activity factor since last reset

The user should note that although some fields are of interest to report signal statistics,
such as long-term level, extreme values for file, average (or DC) level, etc., these values

TAll the fields are double, except the float f and the unsigned long af], hang[], and n.

Version: February 25, 2001 147

shall not be altered. See section 11.2.3, which describes macros for safe inpection of the
parameters of interest.

The algorithm has two operational parts, one that deals with the initialization of the state
variables, and is carried out by the function init_speech voltmeter, and the measuring
part (or the algorithm itself), carried out by speech voltmeter. These are presented in
the next two sections.

11.2.1 1init_speech_voltmeter

Syntax:

#include '"sv-pb56.h"
void init_speech_voltmeter (SVP56_state *state, double f);

Prototype: sv-p56.h
Description:

init_speech_voltmeter performs the initialization of the speech voltmeter state variables
in the structure pointed by state to the appropriate initial values. The only value required
from the user is the sampling rate f (in Hz) of the signal that the speech voltmeter is
supposed to measure. Note that when measuring new speech material, the state variable
shall be re-initialized, otherwise accumulation of previous measurements will happen and
wrong measurements will be reported.

Variables:
state L Is a pointer to a speech voltmeter state variable.
L Is the sampling rate (in Hz) of the signal to be measured in

the next calls of speech_voltmeter. If zero or negative, the
sampling rate is initialized to 16000 Hz.

Return value:

None.

11.2.2 speech_voltmeter

Syntax:

#include "sv-pb56.h"
double speech voltmeter (float *buffer, long smpno, SVP56 _state *state);

Prototype: sv-p56.h
Description:

speech_voltmeter performs the measurement of the active level of a speech signal ac-
cording to [TU-T Recommendation P.56. Other relevant statistics are also available in
the state variable (for details, see section 11.2.3 ahead):

148 ITU-T Software Tool Library, release 2000

e average level;
e maximum and minimum amplitude values;
e rms power, in dB;

Variables:

buffer ..., Is the input sample float buffer.

SMPNO .. Is the number of samples in buffer.

state Is a pointer to the state variable buffer. This shall have been

initialized by a previous call to init_speech _voltmeter.

Return value: Returns the active speech level, in dB relative to dBov, as a double.

11.2.3 Getting state variable fields

Some macros are provided for the inspection of the speech voltmeter statistics:
Syntax:

#include "sv-pb56.h"
SVP56_get_rms_dB(SVP56_state state) ;
SVP56_get_DC_level (SVP56_state state) ;
SVP56_get_activity(SVP56_state state);
SVP56_get_pos_max (SVP56_state state) ;
SVP56_get_neg max (SVP56_state state) ;
SVP56_get_abs_max (SVP56_state stale) ;
SVP56_get_smpno (SVP56_state state) ;

Description:

SVP56_get rms_dB and SVP56_get DC_level return respectively the long-term level (in
dBov) and the DC level (in the normalized range) calculated for the material, both as a
double.

SVP56_get_activity returns the activity factor as a double, in percents (0..100%).

SVP56_get_pos_max, SVP56_get_neg max, and SVP56_get_abs_max returns respectively the
maximum positive, negative and absolute amplitudes found for the input data, as nor-
malized double values (range —1.0..41.0).

SVP56_get_smpno returns as a unsigned long the total number of samples.
Variables:

All the macros expect a valid SVP56 state variable structure (not a pointer!).

11.3 Portability and compliance

Compliance tests of this module have been done based on the compliance with other
existing implementations, especially of the Deutsches Bundespost Telekom Forschungs
Institute. Reported results were found to be within the error margins of the P.56 algo-
rithm.

Version: February 25, 2001 149

Portability was checked by running the same speech file on a proven platform and on a
test platform. Results have to be identical, in especial long-term and active levels, as well
as the activity factor. During the development of this tool, the provided demonstration
programs (see section 11.4) were used to measure and level-equalize a reference file. These
test files are provided in the STL distribution.

This module had portability tested for VAX/VMS with VAX-C and GNU C (gcc) and for
MS-DOS with a number of Borland C/C++ compilers (Turbo C v2.0, Turbo-C++ v1.0,
Borland C++ v3.1). Portability was also tested in a number of Unix workstations and

compilers: Sun workstation with Sun-OS and Sun-C (cc), acc, and gee; HP workstation
with HP-UX and gcec.

11.4 Examples

11.4.1 Description of the demonstration programs

As a part of the speech voltmeter module, two example programs are provided. They are
called svb6demo.c and actlevel.c.

Both example programs calculate the equalization factor to equalize the active speech
level of a file ‘NdB’ dBs below the 0 dBov reference using the algorithm described in this
chapter. However, only program sv56demo.c carry out the level-equalization of the input
file, which is saved in an aoutput file. Levels are reported in dBov.

In general, input files are in integer representation, 16-bit words, 2’s complement (i.e.,
short data). In UGST convention, this data must be left-adjusted, rather than right-
adjusted. Since the speech voltmeter uses float input data, it is necessary to convert from
short (in the mentioned format) to float; this is carried out by the function sh2f1().
In addition, the option to ‘normalize’ the input data to the range -1..+1 is selected. After
the equalization factor is found, results are reported on the screen, which varies according
to the program used and some of the command-line options.

While program actlevel.c stops at this point, program sv56demo.c proceeds calling
the function scale() to carry out the (amplitude) equalization using single (rather than
double) float precision. After equalization, the samples are converted back to integer
(short, right-justified) with the routine £f12sh() using truncation, no zero-padding of
the least significant bits, left-justification of data, and hard-clipping of data above the
overload point. After that, data is saved to the user-specified file .

11.4.2 Small example

Following is an simplification of the described demonstration programs. It only measures
the statistics for the input file, without carrying out level equalizations and does not
implement the several command-line options of actlevel.c.

#include <stdio.h>
#include <stdlib.h>

150 ITU-T Software Tool Library, release 2000

#include <math.h>

#include "ugstdemo.h" /* ... UGST demonstration program defs ... */
#include "sv-p56.h" /* ... SV-P56 prototypes & defs ... */
#include "ugst-utl.h" /* ... UGST utilities ... */

#define BLK_LEN 256

void main(argc, argv)

int argc;
char *xargv[];
{
SVP56_state state; /* Speech voltmeter state */
char FileIn[180]; /* input file name */
FILE *Fi; /* input file pointers */
long N=BLK_LEN, 1;
short bitno, buffer[BLK_LEN];
float Buf [BLK_LEN] ;
double ActiveLeveldB, sf, satur;

/* Reads parameters for processing */
GET_PAR_S(1, "_Input File: ", FilelIn);

/* Checks parameters 2, and 3 for specification in command line */
FIND_PAR_D(2, "_Sampling Frequency: .. ", sf, 16000);
FIND_PAR_L(3, "_A/D resolution: " bitno, 16);

/* Calculate overload point in the non-normalized range */
satur = pow ((double)2.0, (double) (bitno - 1));

/* Reset- variables for speech level measurements */
init_speech_voltmeter(&state, sf);

/* Opening input file */
Fi = fopen(FileIn, RB);

/* Read samples ... */
while ((1 = fread(buffer, N, sizeof(short), Fi)) > 0)
{
/* ... Convert samples to float, normalizing to +1..-1 %/

sh2f1((long) 1, buffer, Buf, (long) state.bitno, 1);

/* ... Get the active level */
ActivelLeveldB = speech_voltmeter (Buf, (long) 1, &state);

/* If the activity factor is 0, don’t report many things */
if (SVP56_get_activity(state) == 0)
printf("\n Activity factor is ZERO -- the file is silence or idle noise");
else
{
printf("\n DC level: »7.0f [PCM]",

¥

Version: February 25, 2001

SVP56_get_DC_level(state) * satur);

printf("\n Maximum positive value: .. %7.0f
SVP56_get_pos_max(state) * satur);
printf("\n Maximum negative value: .. %7.0f
SVP56_get_neg_max(state) * satur);
printf("\n Long-term energy (rms): .. %7.3f
SVP56_get_rms_dB(state);
printf("\n Active speech level: W7 .3f
printf("\n Activity factor: W7 .3f
SVP56_get_activity(state));
}
fclose(Fi);

[pcM]",
[pcM]",
[dBov]",

[dBov]", ActiveLeveldB);
YA R

151

152 ITU-T Software Tool Library, release 2000

Chapter 12

ITU-T Basic Operators

12.1 Overview of basic operator libraries

The fixed-point descriptions of 5.723.1 and G.729 are based on 16 and 32-bit arithmetic
operations defined by ETSI in 1993 for the standardisation of the half-rate GSM speech
codec. These operations are also used to define the GSM enhanced full-rate (EFR) and
adaptive multi-rate (AMR) speech codecs. [1]

Although almost identical to the G.729 basic operators library, the ETSI EFR/AMR
library contains a number of modifications that should be incorporated into an STL
version of the library. These include trapping excessive shift values and a modification to
the generation of the carry flag (which is not actually used in G.729).

12.2 Description of the 32-bit basic operators and
associated weights

The following describes the different basic operators available in the STL, and are orga-
nized by complexity (“weights”). The reported complexity values were current as of the
publication of the STL2000, however a revision is being considered by UGST.

12.2.1 Variable definitions

The variables used in the operators are signed integers in 2’s complements representation,
defined by:

v1, v2: 16 bit variables
Lvl, L_v2, L_v3: 32 bit variables

153

154 ITU-T Software Tool Library, release 2000

12.2.2 Arithmetic operators with complexity weight of 1

add(vl, v2)

Performs the addition (vi+v2) with overflow control and saturation; the 16 bit result is
set at +32767 when overflow occurs or at 32768 when underflow occurs.

sub(vl, v2)

Performs the subtraction (vi-v2) with overflow control and saturation; the 16-bit result
is set at +32767 when overflow occurs or at -32768 when underflow occurs.

abs_s(v1)
Absolute value of v1. If v1 is =32768, returns 32767.

shl(vl, v2)

Arithmetically shift the 16 bit input v1 left v2 positions. Zero fill the v2 LSB of the
result. If v2 is negative, arithmetically shift v1 right by -v2 with sign extension. Saturate
the result in case of underflows or overflows.

shr(vl, v2)

Arithmetically shift the 16 bit input v1 right v2 positions with sign extension. If v2 is
negative, arithemtically shift v1 left by -v2 and zero fill the -v2 LSB of the result:

shr(vl, v2) = shl(vl, -v2)

Saturate the result in case of underflows or overflows.

extract_h(L_v1)
Return the 16 MSB of L_v1.

extract_1(L_v1)
Return the 16 LSB of L_v1.

mult(vl, v2)

Performs the multiplication of v1 by v2 and gives a 16 bit result which is scaled, i.e.
mult(vl, v2) = extract_l(L_shr((vl times v2),15))

Note that mult (-32768,-32768) = 32767.

Lmult(vl, v2)

Operator L_mult implements the 32 bit result of the multiplication of v1 times v2 with
one shift left, i.e.

Lmult(vl, v2) = L_shl((vl x v2), 1)

Version: February 25, 2001 155
Note that L_mult (-32768,-32768) = 2147483647.

LmultOo(vl, v2)

Operator L.mult0 implements the 32 bit result of the multiplication of v1 times v2 without
left shift, i.e.

Lmult(vl, v2) = (vl X v2)

negate(vl)
Negate v1 with saturation, saturate in the case when input is -32768:

negate(vl) = sub(0, v1)

round (L_v1)

Round the lower 16 bits of the 32 bit input number into the most significant 16 bits with
saturation. Shift the resulting bits right by 16 and return the 16 bit number:

round (L_v1l) = extract_h(L_add(L_v1l, 32768))

Lmac(L_v3, v1, v2)

Multiply v1 by v2 and shift the result left by 1. Add the 32 bit result to L_v3 with
saturation, return a 32 bit result:

Lmac(L_v3, vl, v2) = L.add(L_v3, L.mult(vl, v2))

Lmsu(L_v3, vl, v2)

Multiply v1 by v2 and shift the result left by 1. Subtract the 32 bit result from L_v3 with
saturation, return a 32 bit result:

L.msu(L_v3, v1, v2) = L_sub(L_v3, Lmult(vl, v2)).

LmacO(L_v3, vl, v2)

Multiply v1 by v2 without left shift. Add the 32 bit result to L_v3 with saturation,
returning a 32 bit result:

Lmac(L_v3, v1, v2) = L_add(L_v3, LmultO(vl, v2))

LmsuO(L_v3, vl, v2)

Multiply v1 by v2 without left shift. Subtract the 32 bit result from L_v3 with saturation,
returning a 32 bit result:

L.msu(L_v3, v1, v2) = L_sub(L_v3, LmultO(vl, v2)).

L.macNs(L_v3, v1, v2)

Multiply v1 by v2 and shift the result left by 1. Add the 32 bit result to L_v3 without
saturation, return a 32 bit result. Generates carry and overflow values:

156 ITU-T Software Tool Library, release 2000
L.macNs(L_v3, v1, v2) = L_add_c(L_v3, Lmult(vl, v2))

L.msuNs(L_v3, v1, v2)

Multiply v1 by v2 and shift the result left by 1. Subtract the 32 bit result from L_v3
without saturation, return a 32 bit result. Generates carry and overflow values:

L.msuNs(L_v3, v1, v2) = L_sub_c(L_v3, Lmult(vl, v2))

Lmls(L_vl, v2)

Performs a multiplication of a 32-bit variable L_v1 by a 16-bit variable v2, returning a
32-bit value.

div_1(L_v1l, v2)

Produces a result which is the fractional integer division of a positive 32-bit value L_v1
by a positive 16-bit value v2. The result is positive (leading bit equal to 0) and truncated
to 16 bits.

imult(vl, v2)

Multiply two 16-bit words v1 and v2 returning a 16-bit word with overflow control.

12.2.3 Arithmetic operations with complexity weight of 2

L_add(L_vl, L.v2)

This operator implements 32 bit addition of the two 32 bit variables (L_vi+L_v2) with
overflow control and saturation; the result is set at +2147483647 when overflow occurs or
at —2147483648 when underflow occurs.

L_sub(L_vl, L_v2)

32 bit subtraction of the two 32 bit variables (L_vi-L_v2) with overflow control and
saturation; the result is set at +2147483647 when overflow occurs or at -2147483648
when underflow occurs.

L.add c(L_vl, L.v2)

Performs the 32 bit addition with carry. No saturation. Generates carry and overflow
values. The carry and overflow values are binary variables which can be tested and
assigned values.

L_sub_c(L_vl, L_v2)

Performs the 32 bit subtraction with carry (borrow). Generates carry (borrow) and
overflow values. No saturation. The carry and overflow values are binary variables which
can be tested and assigned values.

Version: February 25, 2001 157

L_negate(L_v1)
Negate the 32 bit L_v1 with saturation, saturate in the case where input is -2147483648.

L_shl(L_vl, v2)

Arithmetically shift the 32 bit input L_v1 left v2 positions. Zero fill the v2 LSB of
the result. If v2 is negative, arithmetically shift L_v1 right by -v2 with sign extension.
Saturate the result in case of underflows or overflows.

L_shr(L_vl, v2)

Arithmetically shift the 32 bit input L_v1 right v2 positions with sign extension. If v2
is negative, arithemtically shift L_v1 left by -v2 and zero fill the -v2 LSB of the result.
Saturate the result in case of underflows or overflows.

mult_r(vl, v2)

Same as mult () but with rounding, i.e.

mult_r(vl, v2) = extract_1(L_shr(((vl x v2)+16384), 15))
and mult_r(-32768, -32768) = 32767.

shr_r(vl, v2)
Same as shr() but with rounding. Saturate the result in case of underflows or overflows.

if (v2>0) then

if (sub(shl(shr(vi,v2),1), shr(vl,sub(v2,1)))==0)
then shr_r(vl, v2) shr(vl, v2)

else shr_r(vl, v2) add(shr(v1i, v2), 1)

else if (v2 < 0)
then shr_r(vl, v2)

shr(vl, v2)

shift r(vl, v2)
Same as sh1() but with rounding. Saturate the result in case of underflows or overflows:

shift_r(vl, v2) = shr.r(vl, -v2)

mac_r (L_v3, vi, v2)

Multiply v1 by v2 and shift the result left by 1. Add the 32 bit result to L_v3 with
saturation. Round the 16 least significant bits of the result into the 16 most significant
bits with saturation and shift the result right by 16. Returns a 16 bit result.

mac_r(L._v3, vi, v2) =
round (L_mac(L_v3, vl, v2))=
extract_h(L_add(L_add(L_v3, L_mult(vl, v2)), 32768))

158 ITU-T Software Tool Library, release 2000

msu_r (L_v3, vi, v2)

Multiply v1 by v2 and shift the result left by 1. Subtract the 32 bit result from L_v3
with saturation. Round the 16 least significant bits of the result into the 16 bits with
saturation and shift the result right by 16. Returns a 16 bit result.

msu_r(L_v3, vi, v2) =
round (L_msu(L_v3, v1, v2))=
extract_h(L_add(L_sub(L_v3, L_mult(vl, v2)), 32768))

L_deposit_h(v1l)

Deposit the 16 bit v1 into the 16 bit most significant bit of the 32 bit output. The 16
least significant bits of the output are zeroed.

L_deposit_1(v1)

Deposit the 16 bit v1 into the 16 bit least significant bit of the 32 bit output. The 16
most significant bits of the output are sign extended.

12.2.4 Arithmetic operations with complexity weight of 3

Lshr r(L._vl, v2)

Same as L_shr(v1l,v2) but with rounding. Saturate the result in case of underflows or
overflows:

if (v2 > 0) then

if (L_sub(L_shl(L_shr(L_v1,v2),1), L.shr(L_vl, sub(v2,1)))) ==
then L_shr r(L_vl, v2) L_shr(L_v1l, v2)

else L.shr r(L_vl, v2) L_add(L_shr(L_v1l, v2), 1)

if (v2 < 0)
then L_shr r(L_vl, v2)

L_shr(L_v1l, v2)

L_shift_r(L_vl, v2)

Same as L_sh1(L_v1,v2) but with rounding. Saturate the result in case of underflows or
overflows.

L_shift_r(L_vl, v2) = L_shrr(L_vl, -v2)

L_abs(L_v1)
Absolute value of L_v1, with L_abs (-2147483648)=2147483647.

Version: February 25, 2001 159

12.2.5 Arithmetic operations with complexity weight of 4

L_sat(L_v1)

Long (32 bit) L_vl is set to 2147483647 if an overflow occurred, or 2147483648 if an
underflow occurred, on the most recent L_add_c (), L_sub_c(), L_.macNs() or L_msuNs()
operations. The carry and overflow values are binary variables which can be tested and
assigned values.

12.2.6 Arithmetic operations with complexity weight of 15

norm_s(vl)

Produces the number of left shifts needed to normalise the 16 bit variable v1 for positive
values on the interval with minimum of 16384 and maximum 32767, and for negative
values on the interval with minimum of -32768 and maximum of -16384; in order to
normalise the result, the following operation must be done:

norm_vl = shl(vl, norm_s(vl))

12.2.7 Arithmetic operations with complexity weight of 18

div_s(vl, v2)

Produces a result which is the fractional integer division of v1 by v2. Values in v1 and
v2 must be positive and v2 must be greater than or equal to vi. The result is positive
(leading bit equal to 0) and truncated to 16 bits. If vi=v2, then div(vl, v2) = 32767.

12.2.8 Arithmetic operations with complexity weight of 30

norm_1(L_v1)

Produces the number of left shifts needed to normalise the 32 bit variable L_v1 for pos-
itive values on the interval with minimum of 1073741824 and maximum 2147483647,
and for negative values on the interval with minimum of -2147483648 and maximum of
-1073741824; in order to normalise the result, the following operation must be done:

Lnorm_vl = L_shl(L_vl, norm_1(L_v1))

160 ITU-T Software Tool Library, release 2000

12.2.9 Complexity associated with data moves, logical opera-
tions, arithmetic test and other operations

Data moves

Each data move on short (16 bits) data has a weight of 1 and each data move on long
(32 bits) has a weighted of 2.

A short variable cannot be moved to a long variable directly, and a long variable cannot be
moved to a short variable directly. In these cases, functions such as round (), extract_10),
extract_h(), L_deposit_1(), L_deposit_h() must be used.

There will be no extra weighting for data move for the following functions: extract_1(),
extract_h(), L_.deposit_1() and L_deposit_h() (the weighting of the data move is al-
ready included in the weighting of these functions).

Data moves are only counted in the following cases:
1. A data move from a constant to a variable;
2. A data move from a variable to a variable;
3. A data move of the result of a basic operation to an array variable;
4. When an arithmetic test is performed on an array variable.

Logical operations

A logical operation is one of the following: And, Or, Xor, and Not. Similarly to the move
operation, logical operations involving short and long data will have a weight of 1 and
2, respectively.

Arithmetic tests

Each arithmetic test (short or long) has a weight of 2.

All arithmetic test on data must be presented as a compare to zero. To perform com-
parison between two variables (or a variable and a non-zero constant), a subtract (sub or
L_sub) must be performed first.

Other operations

Address computation must be excluded from the complexity evaluation. However, when
extremely complex address computations are done, these address computations should be
resolved using the basic operations, in order to account for the associated complexity.

There is no complexity counted for any loops, subroutine calls, etc., except for the com-
plexity for arithmetic test on data in program control statement (e.g. do while).

Table 12.1 contains a survey of basic operator usage.

Version: February 25, 2001 161

Table 12.1: Use of 32-bit basic operators in G.723.1, G.729 and ETSI GSM
speech coding recommendations.

Operation | Weight | FR GSM | HR GSM | EFR GSM | AMR GSM | G.729 | G.723.1 | TETRA |

add () 1
sub()
abs_s()
shl()

shr()
extract_h()
extract_1()
mult()
Lmult()
negate()
round ()
L_mac()
L_msu()
L_macNs ()
L_msuNs ()
L_add()
L_sub()
L_add_c()
L_sub_c()

L negate()
L_sh1()
L_shr()
mult_r()
shr_r()
mac_r ()
msu_r ()
L_deposit h()
L_deposit1()
L_shr_r()
L_abs()
L_sat ()
norm_s ()
div_s()
norm_1()

PR CRVEY
CECICIE

P R i R I I B

D b b b A A A A e b b b A

Db b B A A A A b b e b

R R e R e R s R R e R e e R e R R e R e R

R R R R RV R VR VR VR RS

o

ke
ks
ks
ks

A
A A
A A
A A A

A A

>~
N

s
M A AT A A A

&
SRRl
SRRl

Q0 O DN RN DN DD DN N DD DD RN DN DN N N = o e e e e e e e e e e e
SRRl

1)

A A A A A A A

[
O 0o Ot
-
=
M
R
sRals
sRals

sl

Lmls()
div_1()
imult ()

g el s R e B e B R e el e il e i Bl i R e e e e e Bl I Il

Shalal
NI

Lmult0()
L_mac0()
L_msu0()

[N QY T T —y

162 ITU-T Software Tool Library, release 2000
Notes to Table 12.1:

1. abs_s(vl) is referred to as abs(vl) in GSM 06.10 (GSM full-rate).

2. shl(v1,v2) is written as vl<<v2 in GSM 06.10.

3. shr(vl,v2) is written as v1>>v2 in GSM 06.10.

4. v2=extract_h(L_v1) is written as v2 = L_v1l in GSM 06.10.

5. negate(vl) is written as —v1 in GSM 06.10.

6. L_negate(L_v1) is written as —~L_v1 in GSM 06.10.

7. L_shl(L_v1,v2) is written as L_vl<<v2 in GSM 06.10.

8. L_shr(L_v1,v2) is written as L_v1>>v2 in GSM 06.10.

9. L_v2=deposit_l(vl) is written as L_v2=v1l in GSM 06.10.
10. div_s(vl,v2) is written as div(vl,v2) in GSM 06.10.
11. norm1(L_v1) is written as norm(L_v1l) in GSM 06.10.
12. GSM 06.20 uses shift_r(v1,v2), which can be implemented as shr_r(vl,-v2).
13. GSM 06.20 uses L_shift_r(L_v1,v2), which can be implemented as L_shr_r(L_v1,-v2).
14. div_s(v1,v2) is written as divide_s(v1,v2) in GSM 06.20.
15. Operator is not part of the original ETSI library.

16. Operator is not part of the original ETSI library but was accepted in the TETRA
standard.

Chapter 13

UTILITIES: UGST utilities

This module does not relate to any I'TU-T Recommendation, but implements several
general-purpose routines, that are needed when using other STL modules.

In the process of implementing the STL modules, it was found that the interfacing between
data representations (float and short; serial and parallel) could present problems.
Hence, algorithms implementation these functions have been made available in the ITU-T
STL. Additionally, a scaling routine for application of gain and loss to speech samples is
included.

13.1 Some definitions

Some functions in this module convert between a serial format and a parallel format. The
parallel format is defined to be a representation in which all the bits in a computer word
have an information content, as in a multi-level representation of data. Speech samples
in a computer file are a typical example of a parallel representation. A serial format is
defined as the representation of the data where each computer word refer to a single bit of
information. An example would be the sequence of bits sent in a communication channel
refering to an encoded digital signal. A serial bitstream, in the context of the ITU-T STL,
refers to a multi-level representation of information bits in which each of the “hard” bits
‘0’ or ‘1’ are mapped respectively to the so-called softbits 0x007F and 0x0081, to which
an error probability is associated. These softbits are stored in 16-bit right-justified words.
In addition, if the bitstream is compliant to the bitstream signal representation in Annex
B of ITU-T Recommendation G.192, the serial bitstream “payload” described above will
be preceed by a synchronization header. A synchronization header is composed by a
synchronization word followed by a frame length word. Synchronization words are words
in the bitstream in the range 0x6B21 to 0x6B2F. A synchronization word equal to 0x6B20
indicates a frame loss. The frame length word is a two-complement word representing the
number of softbits in the payload. Therefore, the frame length word does not account for
the synchronization header length (which equals two, by definition). Typically (as in the
EID module), encoded signals are represented using the bitstreams with a synchronization
header, while error patterns are represented without a synchronization header.

163

164 ITU-T Software Tool Library, release 2000
13.2 Implementation

The functions implemented in this module are:

escale: for level change of a float data stream;

e sh2flx: for conversion from short to float;

e fl2sh: for conversion from float to short;

e serialize *: for conversion from parallel to serial data representation;
e parallelize *:for conversion from serial to parallel data representation;

Following you find a summary of calls to these functions.

13.2.1 scale

Syntax:

#include "ugst-utl.h"
long scale (float *buffer,long smpno,double factor);

Prototype: ugst-utl.h
Description:
Gain/loss insertion algorithm that scales the input buffer data by a given factor. If the

factor is greater than 1.0, it means a gain; if less than 1.0, a loss. The basic algorithm is:

y(k) = x(k) - factor

Please note that:
e the scaled data is put into the same location of the original data, in order

to save memory space, thus overwriting original samples;
e input data buffer is an array of floats;

e scaling precision is single (rather than double precision).

Variables:

buffer ..., Float data vector to be scaled.
SMPNO e Number of samples in buffer.
factor ...l The floatscaling factor.

Return value:

Return the number of scaled samples.

13.2.2 sh2fl

Syntax:

#include "ugst-utl.h"
void sh2fl (long n, short ¥z, float *y, long resolution, char norm);

Prototype: ugst-utl.h

Description:

Version: February 25, 2001 165

Common conversion routine. The conversion routine expects the fixed point data to be in
the range between —32768..32767. Conversion to float is done by taking into account only
the most significant bits (i.e., input samples shall be left-justified), normalizing afterwards
to the range —1..41, if norm is 1.

In order to maintain a match with its complementary routine £12sh, a set of macros have
been defined for resolutions in the range of 16 to 12 bits (see below for the complementary
definitions):

sh2fl_16bit: conversion from 16 bit to float
sh2fi_15bit: conversion from 15 bit to float
sh2fi_14bit: conversion from 14 bit to float
sh2fl_13bit: conversion from 13 bit to float
sh2fl_12bit: conversion from 12 bit to float

Variables:

N Is the number of samples in ix] |;

1T e Is input short array pointer;

Y Is output float array pointer;

resolution Is the resolution (number of bits) desired for the input data
in the floating point representation.

NOTM oo Flag for normalization:

I: normalize float data to the range —1..41;

0: convert from short to float, leaving data in the range:
-32768>>(16-resolution) .. 32767>>(16-resolution),

where > is the right-shift operation.

Return value:

None.

13.2.3 sh2fl_alt

Syntax:

#include "ugst-utl.h"
void sh2fl_alt (long n, short *iz, float *y, short mask);

Prototype: ugst-utl.h
Description:

Common conversion routine alternative to routine sh2f1. This conversion routine expects
the fixed-point data to be in the range -32768..32767. Conversion to float is done by taking
into account only the most significant bits, indicated by mask. Conversion to float results
necessarily in normalised values in the range -1.0 < y <+1.0.

Variables:
M Number of samples in ix]].
1T e Pointer to input short array.

U Pointer to output float array.

166 ITU-T Software Tool Library, release 2000

mask Mask determining how many bits of the input samples are
to be considered for convertion to float. Bits 1’ in mask
indicate that this bit in particular will be used in the conver-
sion. For example, mask equal to OxFFFF indicates that all
16 bits of the word are used in the convertion, while mask
equal OxFFFE, 0xFFFC, OxFFF8, or OxFFFO will force respec-
tively only the upper 15, 14, 13, or 12 most significant bits to
be used.

Return value:

None.

13.2.4 £f12sh

Syntax:

#include "ugst-utl.h"
long f12sh (long n, float *r, short *iy, double half.lsb, unsigned mask) ;

Prototype: ugst-utl.h
Description:

Common quantisation routine. The conversion routine expects the floating point data to
be in the range between —1..+1, values outside this range are limited. Quantization is
done by taking into account only the most significant bits. Therefore, the quantized (or
converted) data are located left justified within the 16-bit word, and the results are in the
range:

e 32768, .., -1, 0, +1, .., 432767, if quantized to 16 bit
e 32768, .., -2, +2, .., 432766, if quantized to 15 bit
e 32768, ..., 4, +4, ..., 432763, if quantized to 14 bit
e 32768, .., -8, +8 ..., 432760, if quantized to 13 bit
e 32768, ..., -—16, +16, ..., +32752, if quantized to 12 bit

The operation may be summarized as:
yr = (z, £ h)&m

where z;, is the float number, 1, is the quantized number, h is the value of half-L.Sb for
the resolution desired (which is added to xy if the latter is positive or zero, or subtracted
otherwise), and m is the bit mask (to assure that the bits below the LSb are 0). The
operation = is a truncation, and & is a bit-wise AND operation. The appropriate values

for h are determined by:
h=0.5.20"F =2!5=F

where B is the desired resolution in bits. As an example, if data is to be stored with 15
bits of resolution (equivalent to —16384..+16383, in right-justified notation), the rounding
number A is 1.0, because the smallest number in the output buffer can be +1 or —1. The
mask m, by its turn, is

m = 0tFFFF < (16 — B)

Version: February 25, 2001 167

where < is the left-shift bit operation with zero-padding from the right. For the same
example, m is OXFFFE, i.e., only bit 0 of the samples is zeroed.

To facilitate to the use of the £12sh, a set of macros has been defined for quantizations
in the range of 16 to 12 bits (see ugst-utl.h):

e f12sh_16bit: conversion from float to 16 bit
e f12sh_15bit: conversion from float to 15 bit
e f12sh_1/bit: conversion from float to 14 bit
e f12sh_13bit: conversion from float to 13 bit
e f12sh_12bit: conversion from float to 12 bit

In some cases truncated data is needed, what can be accomplished by setting h = 0. For
example, at the input for A-law encoding, truncation is necessary, not rounding. On the
other hand within recursive filters rounding is essential. Hence, this routine serves both
cases.

Concerning the location of the fixed-point data within one 16 bit word, it is more practical
to have the decimal point immediateley after the sign bit (between bit 15 and 14, if the bits
are ordered from 0..15). Since this is well defined, software that processes the quantized
data needs no knowledge about the resolution of the data. It is not important whether
tha data comes from A or u law decoding routines or from 12-bit (13, 14, 16-bit) A/D
converters.

It should be noted that this routine only processes data in a normalized form (—1.0 <
x < +1.0); it shall not be used if data is in the short range (-32768.0 .. 32767.0).

Variables:

N Number of samples in x| |.

T Pointer to input float array.

W is output short array pointer.

halflsb — A double representation of half LSb for the desired resolution
(quantization).

mask The unsigned masking of the lower (right) bits.

Return value:

Returns the number of overflows that happened in the quantization process.

13.2.5 serialize *_justified

Syntax:

#include "ugst-utl.h"
long serialize right justified (short *par_buf, short *bit_stm, long n, long
resol, char sync);

long serialize left justified (short *par_buf, short *bit_stm, long n, long
resol, char sync);

Prototype: ugst-utl.h

Description:

168 ITU-T Software Tool Library, release 2000

Routines serialize right_justified and serialize_left_justified convert a frame
of n right- or left-justified samples with a resolution resol into a right-justified, serial soft
bitstream of length n.resol. If the parameter sync is set, a serial bitstream compliant to
the Annex B of ITU-T Recommendation G.192 will be generated. In this case, the the
length of the bitstream is increased to (n+2).resol.' Tt should be noted that the least
significant bits of the input words are serialized first, such that the bitstream is a stream
with less significant bits coming first.

The only difference between these functions is that function serialize right_justified
serializes right-justified parallel data and function serialize left_justified serialize
left-adjusted data.

It is supposed that all parallel samples have a constant number of bits, or resolution, for
the whole frame. If this does not happen, the bitstream cannot be serialized by these
functions. As an example, this is the case of the RPE-LTP bitstream: the 260 bits of the
encoded bitstream are not divided equally among the 76 parameters of the bitstream. In
cases like this, users must write their own serialization function.

Variables:

par_buf Input buffer with right- or left-adjusted, parallel samples to
be serialized.

bit_stm Output buffer with serial bitstream. It should be noted that
bit_stm must point to an appropriately allocated memory block,
which should be a block of n.resol shorts if sync is 0, or a
block of (n+2).resol shorts otherwise.

N Number of words in the input buffer, i.e., the number of par-
allel samples/frame.

resol Lo ... Resolution (number of bits) of the samples in par_buf.

SYNC e If 1, a synchronization header is to be used (appended) at the

boundaries of each frame of the bitstream. If 0, a synchro-
nization header is not used.

Return value:

This function returns the total number of softbits in the output bitstream, including
the synchronization word and frame length. If the value returned is 0, the number of
converted samples is zero.

13.2.6 parallelize *_justified

Syntax:

#include "ugst-utl.h"
long parallelize right justified (short *bit_stm, short *par_buf, long bs_len,
long resol, char sync);

long parallelize_left_justified (short *bit_stm, short *par_buf, long bs_len,
long resol, char sync);

!The option of adding only the synchronization word, as implemented in the STL92, is no longer
available with this function since the STL96.

Version: February 25, 2001 169

Prototype: ugst-utl.h
Description:

Functions parallelize_right_justified and parallelize_left_justified convert the
samples in input buffer bit_stm from the I'TU-T softbit representation to its parallel repre-
sentation, given a number of bits per sample, or resolution. The input serial bitstream of
length bs_len is converted into a frame with bs_len/resol samples (if sync==0) or (bs_len—
2)/resol samples (if sync/=0), with a resolution resol. It should be noted that softbits in
lower positions in the input buffer are supposed to represent less significant bits of the
parallel word (considering bits that would compose the same parallel word). In other
words, the softbits that come first are less significant than the next ones, when referring
to the same parallel word (as defined by the parameter resol). Therefore, when generating
a word from the bitstream, bits from the bitstream that comes first are converted to lower
significant bits. Frames with the synchronization flag but without the frame length cause
the function to exit with an error code equal to —bs_len.

The difference between both functions is that parallelize_right_justified converts
the serial bitstream to a parallel data in a right-justified format, i.e., data is aligned
to the right, while the routine parallelize_left_justified parallelizes samples with
left-justification.

If the G.192 Annex B bitstream format is used (parameter sync==1), a synchronization
header is present at frame boundaries in the input buffer. In this case, the synchronization
and frame lengthwords are not copied from the bitstream to the output buffer.

Note that all parallel samples are supposed to have a constant number of bits, or resolu-
tion, for the whole frame. This means that, by construction, the number of softbits divided
by the resolution must be an integer number, or (bs_len—2)%resol==0. If this does not
happen, probably the serial bitstream was not generated by one of the serialize_... ()
routines, and cannot be parallelized by these functions. An example is the case of the
RPE-LTP bitstream: the 260 bits of the encoded bitstream are not divided equally among
the 76 parameters of the bitstream. In cases like this, users must write their own paral-
lelization function.

If an erased frame is found, the function returns without performing any action.

Variables:

bit_stm Input buffer with bitstream to be parallelized.
par_buf Output buffer with right- or left-adjusted samples.
bs.lem ..., Number of bits per frame (i.e., size of input buffer, which

includes the synchronization header length if sync==1).
resol ... Resolution (number of bits per parallel sample) of the right-
or left-adjusted samples in par_buf.
SYNC If 1, a synchronization header is expected in the boundaries
of each frame of input the bitstream. If 0, synchronization
headers are not expected.

Return value:

On success, this function returns the number of samples of the output parallel sample
buffer.

170 ITU-T Software Tool Library, release 2000
13.3 Portability and compliance

Since these tools do not refer to [TU-T recommendations, no special compliance tests
are needed. As for portability, it may be checked by running the same speech file on a
proven platform and on a test platform. Files processed this way should match exactly.
A preferred data file would be the ramp described in the compliance test description.

The routines in this module had portability tested for VAX/VMS with VAX-C and GNU
C (gce) and for MS-DOS with a number of Borland C/C++ compilers (Turbo C v2.0,
Turbo-C++ v1.0, Borland C++ v3.1). Portability was also tested in a number of Unix
workstations and compilers: Sun workstation with Sun-OS and Sun-C (cc), acc, and gec;
HP workstation with HP-UX and gcec.

13.4 Example code

13.4.1 Description of the demonstration programs

Two programs are provided as demonstration programs for the UTL module, scaldemo.c
(version 1.3) and spdemo.c (version 3.2).

Program scaldemo.c scales a 16-bit, linear PCM input file by a user-specified linear
or dB gain value. Default resolution is 16 bits per sample, and rounding is used by
default when converting from float to short. When resolutions different from 16 bits
are used with rounding, versions 1.2 and earlier of the program might not produce the
7expected” results. The program used to limit the resolution of the samples (by masking
the 16 — resolution least significant bits) when converting from short to float. Additional
rounding is applied after scaling when converting from float to short. If the desired
operation is, actually, scale and then reduce the resolution with rounding, masking before
the scaling operation should be disabled. In version 1.3 and later, the default behavior
is not to apply such mask, (same as the option -nopremask) for backward compatible
behavior, the option -premask should be explicitly used.

Program spdemo . c converts files between serial and parallel formats using a user-specified
resolution and frame (or block) size. A known issue with spdemonstration version 3.2 is
that the command-line option -frame does not work properly for parallel-to-serial con-
version. In this case, the desired frame size has to be specified as parameter N in the
command line.

13.4.2 The master header file for the STL demonstration pro-
grams

The module also contains the common demonstration program definition file ugstdemo.h
(version 2.2), which is used by all STL demonstration programs. This header file contains
the definition of a number of pseudo-functions and symbols that facilitate the use of a
more homogeneous user interface for the different demonstration programs in the STL.

The available pseudo-functions include:

Version: February 25, 2001 171

GET_PAR * ... Pseudo-functions for printing a user prompt and reading a positional
parameter from the command line. The parameters can be char (C),
integers (I), long integers (L), unsigned long integers (LU), floats (F),
doubles (D), and strings (S).

FIND PAR_* .. Pseudo-functions for printing a user prompt and reading a positional
parameter from the command line if it was specified by the user, or to
assume a default value defined by the programer. The parameters can
be char (C), integers (I), long integers (L), floats (F), doubles (D), and
strings (S).

ARGS() The pseudo-function ARGS () allows that the list of parameters that show
up as its arguments be passed on to ANSI-C compliant compilers, or be
discarded for old-vintage, K&R-style compilers that do not accept pa-
rameter list in function prototypes. This pseudo-function allows for safer
function prototypes in compilers that support parameter declaration in
function prototypes and avoids the need to edit function declarations (or
long #if /#else/#end for prototype sections) for non-ANSI C compilers.

Some of the symbols defined in ugstdemo.h include:

e Symbols WB, RB, WT, RT, and RWT for file open (fopen()) operation. These symbols
are portable across a large number of platforms and permit write-binary, read-binary,
write-text, read-text, and read-write-text file mode operations.

e Symbol MSDOS, which is necessary for proper compilation of some of the programs
under the MS-DOS environment. The symbol is defined in case MS-DOS is detected,
and undefined in case MS-DOS is not detected.

e Symbol COMPILER, which contains a text string describing the compiler used to
generate an executable.

13.4.3 Short and float conversion and scaling routines

The following C code exemplifies the use of the short and float number format interchange
routines, as well as of the gain scaling routine. This program is a simplified version of
the example program scaldemo.c provided in the STL distribution. This program reads
16-bit, 2-complement, left-justified input samples, converts them to a float representation
in the range of -1..+1, applies a gain (or loss) factor to these samples, converts the scaled
samples back to an integer representation (16 bit, 2’s complement, left-justified) using
rounding and hard-clip of the floating point numbers. The number of most significant
bits to be used is also specified by the user.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "ugstdemo.h"
#include "ugst-utl.h"

172 ITU-T Software Tool Library, release 2000

#define LENGTH 5

main(argc, argv)

int argc;
char xargv[];
{
long i, NrSat;
long B, round;
double h;
unsigned m;
short ix[LENGTH] ;
float y [LENGTH] ;
float factor;
GET_PAR_F(1, "_Factor: " factor);
GET_PAR_L(2, "_Resolution: " B);
GET_PAR_L(3, "_Round(l=yes,0=no): ... ", round);

/* Initialize short’s buffer, BUT left-ajusted! x*/
for (i = 0; i < LENGTH; i++)
ix[i] = i << (16 - B);

/* Choose rounding number */
h = 0.5 * (round << (16 - B));

/* Find mask */
m = OxFFFF << (16 - B);

/* Print original data */
printf("ix before normalization\n");
printf (" \n") ;
for (1 = 0; i < LENGTH; i++)

printf ("ix[%3d]1=%5d\n", i, ix[i]);

/* Convert samples to float, normalizing */
sh2f1 (LENGTH, ix, y, B, 1);

/* Normalizes vector */
scale(y, LENGTH, (double) factor);

/* Convert from float to short */
NrSat = £12sh(LENGTH, y, ix, h, m);

/* Inform about overflows */

if (NrSat != 0)
printf("\n Number of clippings: %1d [1 ", NrSat);

/* Print new data */

Version: February 25, 2001 173

printf ("after normalization ... \n");
printf (" \n");
for (i = 0; i < LENGTH; i++)
printf ("y[%3d]l= %e -> ix[%3d]=5d\n", i, y[il, i, ix[il);

return (0);

}

13.4.4 Serialization and parallelization routines

The following C code implements an example of use of the serialization and paralleliza-
tion routines available in the STL. Input data is generated within the program. The
program takes the number of bits per sample, the justification, and whether synchroniza-
tion headers should be generated. The input data is printed on the screen in its parallel
representation, which is then converted to the serial format and back to the parallel for-
mat. Then, the serialized version of the data is printed on the screen, and the program
ends.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "ugstdemo.h"
#include "ugst-utl.h"

#define LENGTH 5

void main(argc, argv)

int argc;
char xargv[];
{
long i, j, k, smpno, bitno, init;
long B, just;
double h;
unsigned m;
char C;
short par [LENGTH] ;
short ser[16 * LENGTH + 2];
char sync;
long (xser_f) (); /* pointer to serialization function */
long (xpar_£f) (); /* pointer to parallelization function */
GET_PAR_L(1, "_RESOLULION: «vvvvvveeeeeeeee e, ", B);
GET_PAR_L(2, "_Data is Right (1) or Left (0) justified? ... ", just);
GET_PAR_L(3, "_Use sync header?cciiuiiinninn. ", sync);

/* Initialize flag "OFF" */

174 ITU-T Software Tool Library, release 2000

init = 0;

¢c =sync 71 : 0;

smpno = LENGTH;

bitno = LENGTH * B + sync ? 2 : O;

/* Initialize data and choose pointers to appropriate functions */
if (just)
{ /* Right-justified data */

ser_f = serialize_right_justified;

par_f = parallelize_right_justified;
for (1 = 0; i < LENGTH; i++)
par[il = i;
}
else
{ /* Left-justified data */
ser_f = serialize_left_justified;
par_f = parallelize_left_justified;
for (i = 0; i < LENGTH; i++)
par[i] = i << (16 - B);
}

/* Print original data */
printf ("\npar[] before serialization\n");
printf (" \n");
for (i = 0; i < LENGTH; i++)

printf ("par[%3d]=%5d\n", i, par[il);

bitno = ser_f

(par, /* input buffer pointer */

ser, /* output buffer pointer */

smpno, /* no. of samples (not bits) per frame */
B, /* number of bits per sample */

sync) ; /* whether sync header is present or not */

smpno = par_f

(ser, /* input buffer pointer */

par, /* output buffer pointer */

bitno, /* number of softbits per frame */

B, /* number of bits per sample */

sync) ; /* whether sync header is present or not */

/* Print new data */

printf (" \n");

printf("| 0x81 represents a ‘1’| \nl| Ox7F represents a ‘0’|\n");
printf (" \n");

printf ("after serialization ... \n");

printf (" \n");

if (sync)

{

Version: February 25, 2001 175

printf ("Sync word is ser[%d]= %04X", 0, ser[0]);
printf ("Frame length is ser[%d]= %04X", 1, ser[1]);
}

for (k = 2, i = 0; i < LENGTH; i++)
{

printf ("\npar[%3d]l=%5d\n", i, par[il);

for (j = 0; j < B; j++, k++)

printf ("ser[%3d]= %04X\t", sync ? k : k - 2, ser[k]);
}
printf ("\n");
}

176 ITU-T Software Tool Library, release 2000

Chapter 14

References

1]

2]

3]

[4]

[5]

(6]

[10]

[11]

ITU-T. Recommendation G.191, Software Tools for Speech and Audio Coding Stan-
dards. ITU, Geneva, March 1993.

Study Group XV. Report of Working Party XV /2. Technical report, CCITT, Novem-
ber 1991. COM XV-R 73-E.

C. South and P. Usai. Subjective Performance of CCITT’s 16 kbit/s LD-CELP
Algorithm with Voice Signals. In Globecom 92. IEEE, 1992.

H.J. Braun, S. Feldes, and G. Schroder. Preselection for the Half-Rate GSM Stan-
dard. In Workshop on Speech Coding for Telecommunications, pages 90-92, Septem-
ber 11-13 1991.

ITU-T. Recommendation P.48, Specification for an intermediate reference system ,
volume V of Blue Book, pages 81-86. ITU, Geneva, 1989.

Bell Northern Research (Canada). Frequency response characteristics for low bit-rate
codec testing. Technical report, UIT-T SG 12, Geneva, December 1994. Delayed
Document D,38 (SG12).

ITU-T. Recommendation P.830, Subjective performance assessment of Telephone
Band and Wideband Digital Codecs. ITU, Geneva, February 1996.

Spiros Dimolitsas, Frank Corcoran, and Channasandra Ravishankar. Correlation
between headphone and telephone-handset listener opinion scores for single-stimulus
voice coder performance assessments. [EEFE Signal Processing Letters, 2(3):41-43,
March 1995.

Spiros Dimolitsas, Frank Corcoran, and Channasandra Ravishankar. Dependence
of opinion scores on listening sets used in degradation category rating assessments.
IEEE Transactions on Speech and Audio Processing, 3(5):421-424, September 1995.

ITU-T. Recommendation P.341, Characteristics of wideband terminals. 1TU,
Geneva, 1994.

Denis Byrne et al. An international comparison of long-term average speech spectra.
Journal of the Acoutical Society of America, 96(4):2108-2120, October 1994.

177

178

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

ITU-T Software Tool Library, release 2000

ITU-T. Recommendation G.712, Performance Characteristics of PCM channels.
ITU, Geneva, 1992.

Aachen University. An Implementation of the Signal Conditioning Device. Technical
Report TD91/23, ETSI/TM/TM5/TCH-HS, April 1991.

V.K. Varma. Testing speech coders for usage in wireless communications systems. In
Second IEEE Workshop on Speech Coding for Telecommunications, “Speech Coding
for the Network of the Future”, Quebec, Canada, October 13-15 1993. IEEE.

Bellcore. Proposed model for simulating radio channel burst errors. Technical report,
CCITT SG XII, Geneva, October 1992. Doc.SQ-15.92(Rev.).

E.N Gilbert. Capacity of a burst-noise channel. Bell Syst. Tech.J., pages 1253-1265,
1960.

D. Knuth. Seminumerical Algorithms . In The Art of Computer Programming .
Addison-Wesley, Massachusetts, 1981.

ITU-T. Recommendation G.192, A Common Digital Parallel Interface for Speech
Standardization Activities. I'TU, Geneva, November 1995.

J. Fennick. Quality Measures and the design of telecommunications systems . Artech
House, 1988.

ITU-T. Recommendation G.711, Pulse code molulation (PCM) of voice frequencies,
volume Fascicle I11.4 of Blue Book, pages 175-184. I'TU, Geneva, 1989.

N.S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall, 1984.

ITU-T. Recommendation G.726, 40, 32, 24, 16 kbit/s adaptive differential pulse code
modulation (ADPCM). ITU, Geneva, 1990.

M. Bonnet, O. Macchi, and M. Jaidane-Saidane. Theoretical analysis of the ADPCM
CCITT algorithm. IEEE Trans.on Communications, 38(6):847-858, June 1990.

W.R. Daumer, X. Maitre, P. Mermelstein, and I. Tokizawa. Overview of the ADPCM
coding algorithm. Proc.Globecom, pages 774-777, 1984.

ITU-T. Comparison of ADPCM Algorithms. [ITU-T Rec.G.726, Appendix III,
Geneva 1994.

ITU-T. Extensions of Recommendation G.726 for use with uniform quantized input
and output. In Recommendation G.726, chapter Annex A. ITU, Geneva, 1994.

S.I. Feldman, D.M. Gay, M.W. Maimone, and N.L. Schryer. A Fortran-to—C Con-
verter. Technical Report Computing Science 149, AT&T Bell Laboratories, August
1990.

ITU-T. Recommendation G.727, 5-, /-, 3- and 2-bits/sample embedded adaptive
differential pulse code modulation (ADPCM). ITU, Geneva, December 1990.

Version: February 25, 2001 179

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

ITU-T. Annex A to Recommendation G.727, Extensions of Recommendation G.727

for use with uniform-quantized input and output. ITU, Geneva, November 1994.

CCITT. Recommendation G.722, 7 kHz audio-coding within 64 kbit/s, volume Fas-
cicle IT1.4 of Blue Book, pages 269-341. ITU, Geneva, 1989.

ITU-T. Recommendation G.725, System Aspects for the Use of the TkHz Audio Codec
within 64 kbit/s, volume Fascicle I11.4 of Blue Book, page 11. ITU, Geneva, 1989.

Paul Mermelstein. G.722, a new CCITT coding standard for digital transmission
of wideband audio signals. IEEE Communications Magazine, 26(1):8-15, January
1988.

Masahiro Taka et al. Overview of the 64 kbit/s (7 kHz) audio coding standard. In
Globecom 86, pages 593-598, Houston, Texas, Dec.1-4 1986. IEEE.

G. Modena, A. Coleman, P. Usai, and P. Coverdale. Subjective Performance Evalu-
ation of the 7 KHz Audio Coder. In Globecom 86, pages 599-604, Houston, Texas,
Dec.1-4 1986. IEEE.

G. Le Tourner et al. Implementation of the 7 kHz Audio Codec and its Transmission
Characteristics. In Globecom 86, pages 605-609. IEEE, 1986.

Manfred Dietrich et al. Initialization and Mode Switching of 7 kHz Audio Terminals.
In Globecom 86, pages 610-614. IEEE, 1986.

Keith R. Harrison et al. Possible Applications for networking considerations relating
to the 64 kbit (7 kHz) audio coding system. In Globecom 86, pages 615-622. IEEE,
1986.

Xavier Maitre. 7 kHz audio coding within 64 kbit/s. IEEE Journal on Selected Areas
in Communications, 6(2):283-298, February 1988.

P. Kroon, R.J. Sluyter, and E.F. Deprettere. Regular-pulse excitation: a novel ap-
proach to effective and efficient multipulse coding of speech. IEEE Trans. Acoust.,
Speech, Signal Processing, ASSP-34(5):1054-1063, October 1986.

Peter Vary et al. Speech codec for the European Mobile Radio System. In ICASSP
88, pages 227-230. IEEE, 1988.

Ulrich Reute (Guest Editor). Special Issue on Medium Rate Speech Coding for
Digital Mobile Technology. Speech Communication, 7(2), July 1988.

GSM-06.10. Full Rate Speech Transcoding. ETSI, France, October 1992. Released
July 1, 1993.

ITU-T. Recommendation P.800, Methods for the subjective determination of trans-
mission quality. I'TU, Geneva, 1996.

H.B Law and R.A. Seymour. A reference distortion system using modulated noise.
Proc.Institution of Electrical Engineers (IEE), 109B:484-485, Nov 1962.

180 ITU-T Software Tool Library, release 2000

[45] ITU-T. Recommendation P.81, Modulated Noise Reference Unit (MNRU) , volume V
of Blue Book, pages 198-203. ITU, Geneva, 1989.

[46] User’s Group on Software Tools. CCITT Software Tool Library Manual. Technical
report, CCITT SG XV, May 1992. COM XV-R 87-E.

[47] ITU-T. Recommendation P.810, Modulated Noise Reference Unit (MNRU) . 1TU,
Geneva, February 1996.

[48] S.F. Campos Neto. Characterization of the revised implementation of the Modu-
lated Noise Reference Unit (MNRU) for the ITU-T Software Tool Library. White
Contribution COM 15-182-E, ITU-T, 1993-1996.

[49] W.H Press, B.P Flannery, S.A. Teukolky, and W.T. Vetterling. Numerical Recipes
in C: The Art of Scientific Computing . Cambridge University Press, Cambridge,
1990.

[50] ITU-T. Recommendation P.56, Objective measurement of active speech level, vol-
ume V of Blue Book, pages 110-120. ITU, Geneva, 19809.

[51] ITU-T. Handbook on Telephonometry . ITU, Geneva, 1992. 2nd. Edition.

Appendix A

Unsupported tools

This Appendix to the ITU-T Software Tool Library (STL) Manual describes the unsup-
ported tools provided in the ITU-T STL. These tools are provided “as is” and without
any warranties or implied suitability to use. However, any feedback on problems with
these tools will be welcome and accomodated as possible, as will any improvements made
which can be shared and incorporated in the STL.

A.1 Source code

ascbin.c: converts decimal or hex ASCII data into short/long/float or double
binary numbers. Input data must be one number per line.
astrip.c: strips off a segment of a file. Can operate on block or sample-

based parameters and can apply windowing to the borders of the
extracted segment. Tested in Unix/MSDOS.

bin2asc.c: converts short /long/float or double binary numbers into octal, deci-
mal or hex ASCII numbers, printing one per line. For Unix/MSDOS.

compfile.c: compare word-wise binary files. For VMS/Unix/MSDOS.

dumpfile.c: dump a binary file. For VMS/Unix/MSDOS.

chrsh.c: convert char-oriented files to short-oriented (16-bit words) files by

padding the upper byte of each word of the output file with zeros.
For Unix/MSDOS.

endian.c: program that verifies whether the current platform is big or little
endian (i.e. high-byte first or low-byte first). For Unix/MSDOS.
fdelay.c: flexible program to introduce delay into a file. Delay can be speci-

fied in value and length, or can be taken from a user-specified file.
For Unix/MSDOS.

g728-vt: ... a directory with software tools for use with the G.728 floating point
verification package. Not all tools are functional; preserved here for
future reference.

getcre32.c: 32-bit CRC calculation function and program (depending on how
it is compiled). Uses the same polynomial as ZIP. Checked for
portability across a number of platforms. Makefile compiles it into
an executable called crc. For Unix/MSDOS.

measure.c: measure statistics/CRC for a bunch of files. For VMS/Unix/MSDOS.

181

182 ITU-T Software Tool Library, release 2000

OPET.C: v implement arithmetic operation on two files: add, subtract, multi-
ply or divide two files applying scaling factors (linear or dB), and
adding a DC level. For Unix/MSDOS.

pshar: a directory with makefiles, readme, source code and test files for a
portable shell archiving/dearchiving program compatible with Unix
the shar utility. Very simple and useful, in especial for MSDOS and
VMS systems. See the directory for more details.

sbhoe: o swap bytes for word-oriented files. For VMS/Unix/MSDOS.

sh2chr.c: convert short-oriented (16-bit words) files to char-oriented files
by ignoring the upper byte of each word of the input file. For
Unix/MSDOS.

SINE.CI i, generate a sinewave file for a given speco of AC/DC/phase/ fre-
quency/sampling frequency values. For VMS/Unix/MSDOS.

sub-add.c: subtract/add files (depending on the compilation, see makefiles).
For VMS/Unix/MSDOS.

zencode.c: uuencode compatible with auto-break/sequencing for long files and
CRC calculation for error detection. Not functional under MSDOS
6.22.

xdecode.c: uudecode compatible with auto-break/sequencing for long files and
CRC calculation for error detection. Not functional under MSDOS
6.22.

A.2 Scripts

rm.bat “fake” deletion utility that tries to emulate the basic functionality
of the Unix command rm, that deletes multiple files specified in the
command line. Should be put in the path, unless a version of rm is
already available.

swapover.bat MSDOS batch script for byte-swapping multiple files. Uses sb.c.

swapover.sh Unix script for byte-swapping multiple files. Uses sb.c.

A.3 Makefiles

makefile.tcc for Borland [bt]cc C/C++ compiler
makefile.djc for MSDOS djc port of gce

makefile.unx for Unix make

makefile.cl for MS Visual C command-line compiler

A.4 Test files

tstunsup.zip zip archive with test files for testing some of the unsupported tools:

Version: February 25, 2001

ctf:
3200
3200
3200
186
186
214
186
200

sb:
100
100

cftestl.dat
cftest2.dat
cftest3.dat
delay-15.ref
delay-a.ref
delay-u.ref
delaydft.ref
delayfil.ref

bigend.src
litend.src

xencode and xdecode:

9182
8705
2093
3795
5368

voice.ori
voice.uue
printme.eps
printme.uue
voiceOl.uue

183

It is necessary to have unzip/pkunzip/Winzip installed for extrac-

tion.

184 ITU-T Software Tool Library, release 2000

Appendix B

Future work

The following item have been identified as future action items by the UGST in the close
future. Contributions are welcome, eventhough the proposed algorithm implementations
may not be in fully compliance with the software tool guidelines:

G.728 .. LDCELP coding at 16 kbit/s, possibly at other bitrates
as well

P.50, P.59 Reference implementations of the Artificial Speech and
Artificial Conversational Speech.

Channel models Transmission channel models to be incorporated in the
EID module, e.g. satellite, cellular, and IP transmission
channels.

Reference systems Alternatives to the MNRU, e.g. T-reference, S-Reference,
PMNRU, PMNRU).

G.726 & G.727 Annex A linear-interfaced G.726 and G.727.

G.711 PLC Packet loss concealment algorithm for G.711 (G.711 Ap-
pendix I).

Processing framework A processing framework tool for the implementation of

host laboratory functions.

185

	Contents
	Chapter 1 Introduction
	1.1 Organization of the Software Library
	1.2 Who to contact
	1.3 Acknowledgements

	Chapter 2 Tutorial
	2.1 Acronyms
	2.2 Definition of terms
	2.2.1 Overload point
	2.2.2 Signal power
	2.2.3 Signal level
	2.2.4 Relation between overload and maximum levels
	2.2.5 Saturation
	2.2.6 Data representation
	2.2.7 Data justi cation
	2.2.8 Equivalent results
	2.2.9 Little- and big-endian data ordering

	2.3 Guidelines for software tool development
	2.4 Software module I/O signal representation
	2.5 Tool specifications

	Chapter 3 RATE-CHANGE: Up- and down-sampling module
	3.1 Description of the Algorithm
	3.1.1 High-quality
	3.1.2 Telephony-band weighting
	3.1.3 Wideband weighting
	3.1.4 Noise weighting
	3.1.5 PCM Quality

	3.2 Implementation
	3.2.1 FIR module
	3.2.1.1 * init for the FIR module
	3.2.1.2 hq kernel
	3.2.1.3 hq reset
	3.2.1.4 hq free

	3.2.2 IIR Module
	3.2.2.1 iir * init
	3.2.2.2 cascade iir kernel
	3.2.2.3 cascade iir reset
	3.2.2.4 cascade iir free
	3.2.2.5 stdpcm * init
	3.2.2.6 stdpcm kernel
	3.2.2.7 stdpcm reset
	3.2.2.8 stdpcm free

	3.3 Tests and portability
	3.4 Examples
	3.4.1 Description of the demonstration programs
	3.4.2 Example: Calculating frequency responses

	Chapter 4 EID: Error Insertion Device
	4.1 Description of the Algorithm
	4.1.1 Simple Channel Model
	4.1.2 The Bellcore Model

	4.2 Implementation
	4.2.1 open eid
	4.2.2 open burst eid
	4.2.3 reset burst eid
	4.2.4 close eid
	4.2.5 BER generator
	4.2.6 FER generator random
	4.2.7 FER generator burst
	4.2.8 BER insertion
	4.2.9 FER module

	4.3 Tests and portability
	4.4 Examples
	4.4.1 Description of the demonstration programs
	4.4.2 Using the bit error insertion routine

	Chapter 5 G.711: The ITU-T 64 kbit/s log-PCM algorithm
	5.1 Description of the algorithm
	5.2 Implementation
	5.2.1 alaw compress and ulaw compress
	5.2.2 alaw expand and ulaw expand

	5.3 Tests and portability
	5.4 Example code
	5.4.1 Description of the demonstration program
	5.4.2 Simple example

	Chapter 6 G.726: The ITU-T ADPCM algorithm at 40, 32, 24, and 16 kbit/s
	6.1 Description of the 32 kbit/s ADPCM
	6.1.1 PCM format conversion
	6.1.2 Di erence Signal Computation
	6.1.3 Adaptive Quantizer
	6.1.4 Inverse Adaptive Quantizer
	6.1.5 Quantizer Scale Factor Adaptation
	6.1.6 Adaptation Speed Control
	6.1.7 Adaptive Predictor and Reconstructed Signal Calculator
	6.1.8 Tone Transition and Detector
	6.1.9 Output PCM Format Conversion
	6.1.10 Synchronous Coding Adjustment
	6.1.11 Extension for linear input and output signals

	6.2 ITU-T STL G.726 Implementation
	6.2.1 G726 encode
	6.2.2 G726 decode

	6.3 Portability and compliance
	6.4 Example code
	6.4.1 Description of the demonstration programs
	6.4.2 Simple example

	Chapter 7 G.727: The ITU-T embedded ADPCM algorithm at 40, 32, 24, and 16 kbit/s
	7.1 Description of the Embedded ADPCM
	7.1.1 Extension for linear input and output signals

	7.2 ITU-T STL G.727 Implementation
	7.2.1 G727 reset
	7.2.2 G727 encode
	7.2.3 G727 decode

	7.3 Portability and compliance
	7.4 Example code
	7.4.1 Description of the demonstration program
	7.4.2 Simple example

	Chapter 8 G.722: The ITU-T 64, 56, and 48 kbit/s wideband speech coding algorithm
	8.1 Description of the 64, 56, and 48 kbit/s G.722 algorithm
	8.1.1 Functional description of the SB-ADPCM encoder
	8.1.2 Functional description of the SB-ADPCM decoder

	8.2 ITU-T STL G.722 Implementation
	8.2.1 g722 encode
	8.2.2 g722 decode
	8.2.3 g722 reset encoder
	8.2.4 g722 reset decoder

	8.3 Portability and compliance
	8.4 Example code
	8.4.1 Description of the demonstration programs
	8.4.2 Simple example

	Chapter 9 RPE-LTP: The full-rate GSM codec
	9.1 Description of the 13 kbit/s RPE-LTP algorithm
	9.1.1 RPE-LTP Encoder
	9.1.2 RPE-LTP Decoder

	9.2 Implementation
	9.2.1 rpeltp encode
	9.2.2 rpeltp decode
	9.2.3 rpeltp init
	9.2.4 rpeltp delete

	9.3 Portability and compliance
	9.4 Example code
	9.4.1 Description of the demonstration program
	9.4.2 Simple example

	Chapter 10 Duo-MNRU: The Dual-mode Modulated Noise Reference Unit
	10.1 Description of the Algorithm
	10.2 Implementation
	Filters in the MNRU module
	Random Number Generator for the MNRU module
	10.2.1 MNRU process

	10.3 Portability and compliance
	10.4 Example code
	10.4.1 Description of the demonstration programs
	10.4.2 Simple example

	Chapter 11 SVP56: The Speech Voltmeter
	11.1 Description of the Algorithm
	11.2 Implementation
	11.2.1 init speech voltmeter
	11.2.2 speech voltmeter
	11.2.3 Getting state variable elds

	11.3 Portability and compliance
	11.4 Examples
	11.4.1 Description of the demonstration programs
	11.4.2 Small example

	Chapter 12 ITU-T Basic Operators
	12.1 Overview of basic operator libraries
	12.2 Description of the 32-bit basic operators and associated weights
	12.2.1 Variable de nitions
	12.2.2 Arithmetic operators with complexity weight of 1
	12.2.3 Arithmetic operations with complexity weight of 2
	12.2.4 Arithmetic operations with complexity weight of 3
	12.2.5 Arithmetic operations with complexity weight of 4
	12.2.6 Arithmetic operations with complexity weight of 15
	12.2.7 Arithmetic operations with complexity weight of 18
	12.2.8 Arithmetic operations with complexity weight of 30
	12.2.9 Complexity associated with data moves, logical opera- tions, arithmetic test and other operations
	Data moves
	Logical operations
	Arithmetic tests
	Other operations

	Chapter 13 UTILITIES: UGST utilities
	13.1 Some definitions
	13.2 Implementation
	13.2.1 scale
	13.2.2 sh2fl
	13.2.3 sh2fl alt
	13.2.4 fl2sh
	13.2.5 serialize * justified
	13.2.6 parallelize * justified

	13.3 Portability and compliance
	13.4 Example code
	13.4.1 Description of the demonstration programs
	13.4.2 The master header le for the STL demonstration programs
	13.4.3 Short and oat conversion and scaling routines
	13.4.4 Serialization and parallelization routines

	Chapter 14 References
	Appendix A Unsupported tools
	A.1 Source code
	A.2 Scripts
	A.3 Makefiles
	A.4 Testfiles

	Appendix B Future work

